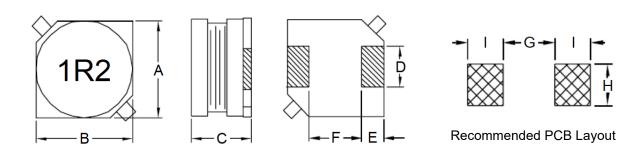
1. Part No. Expression

PSB 0603 1 R 2 M Z F

- (a)
- (b)
- (c) (d) (e) (f)
- (a) Series Code


(d) Tolerance Code

(b) Dimension Code

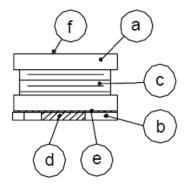
(e) Special Code

- (c) Inductance Code
- (f) Packaging Code

2. Configuration & Dimensions (Unit: mm)

Note: 1. The above PCB layout reference only.

2. Marking: Inductance Code


А	В	С	D	E
6.0±0.3	6.0±0.3	2.9±0.3	2.0±0.2	1.5±0.2
F	G	Н	I	-
3.0±0.2	2.8 Ref	2.2 Ref	1.9 Ref	-

3. Schematic

4. Material List

- (a) Core
- (b) Base
- (c) Wire
- (d) Terminal
- (e) Adhesive
- (f) Ink

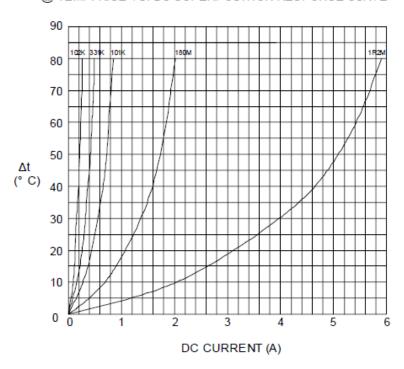
5. General Specifications

- (a) Operating Temp.: -40°C to +85°C (including self-temperature rise)
- (b) All test data referenced to 25°C ambient.
- (c) Heat Rated Current (Irms) will cause the coil temperature rise ΔT of 40°C Max.
- (d) Saturation Current (Isat) will cause inductance L0 to drop 10% Max.
- (e) Rated Current: The lower value of Isat and Irms.
- (f) Resistance to solder heat: 260° C.10 secs
- (g) Storage Condition (Component in its packaging)

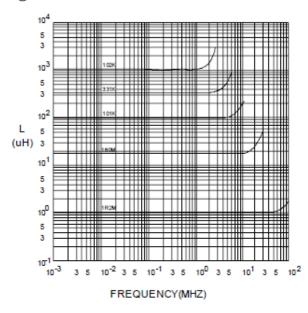
i) Temperature: -10°C to 40°Cii) Humidity: Less than 60% RH

6. Electrical Characteristics

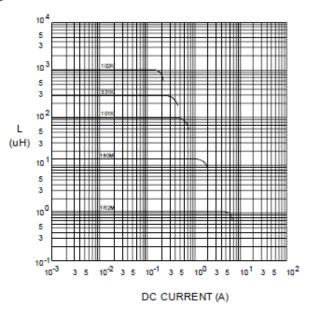
Part Number	Inductance (uH) @0A	Q Ref	Test Frequency	SRF (MHz) Typ	DCR (mΩ) Max	IDC (A) Max
PSB06031R2MZP	1.2	30	1V/100KHz	150.0	25	2.80
PSB06031R5MZF	1.5	30	1V/100KHz	135.0	28	2.60
PSB06032R2MZF	2.2	30	1V/100KHz	85.0	30	2.30
PSB06033R3MZF	3.3	30	1V/100KHz	70.0	55	2.00
PSB06034R7MZF	4.7	25	1V/100KHz	60.0	65	1.85



Part Number	Inductance (uH) @0A	Q Ref	Test Frequency	SRF (MHz) Typ	DCR (mΩ) Max	IDC (A) Max
PSB06036R8MZF	6.8	30	1V/100KHz	45.0	90	1.65
PSB0603100MZF	10.0	25	1V/100KHz	35.0	115	1.45
PSB0603120MZF	12.0	30	1V/100KHz	33.0	150	1.20
PSB0603150MZF	15.0	25	1V/100KHz	32.0	180	1.15
PSB0603180MZF	18.0	30	1V/100KHz	30.0	230	1.05
PSB0603220MZF	22.0	30	1V/100KHz	28.0	250	1.00
PSB0603270MZF	27.0	30	1V/100KHz	27.0	350	0.95
PSB0603330KZF	33.0	35	1V/100KHz	22.0	380	0.90
PSB0603390KZF	39.0	25	1V/100KHz	20.0	410	0.80
PSB0603470KZF	47.0	40	1V/100KHz	16.0	430	0.75
PSB0603560KZF	56.0	40	1V/100KHz	15.0	620	0.70
PSB0603680KZF	68.0	40	1V/100KHz	13.0	710	0.60
PSB0603820KZF	82.0	50	1V/100KHz	11.0	730	0.50
PSB0603101KZF	100.0	45	1V/100KHz	10.0	1050	0.48
PSB0603121KZF	120.0	40	1V/100KHz	9.5	1180	0.45
PSB0603151KZF	150.0	50	1V/100KHz	9.0	1800	0.40
PSB0603181KZF	180.0	50	1V/100KHz	8.0	1950	0.35
PSB0603221KZF	220.0	55	1V/100KHz	7.0	2960	0.30
PSB0603271KZF	270.0	55	1V/100KHz	6.5	3450	0.28
PSB0603331KZF	330.0	50	1V/100KHz	6.0	3800	0.26
PSB0603391KZF	390.0	50	1V/100KHz	5.0	4000	0.24
PSB0603471KZF	470.0	60	1V/100KHz	4.8	4400	0.22
PSB0603561KZF	560.0	60	1V/100KHz	4.4	6200	0.20
PSB0603681KZF	680.0	60	1V/100KHz	4.0	6800	0.18
PSB0603821KZF	820.0	60	1V/100KHz	3.8	12000	0.16
PSB0603102KZF	1000.0	60	1V/100KHz	3.5	13500	0.14



7. Characteristics Curves


@ TEMP. RISE VS. DC SUPERPOSITION RESPONSE CURVE

@ INDUCTANCE VS. FREQUENCY RESPONSE CURVE

@ INDUCTANCE VS. DC SUPERPOSITION RESPONSE CURVE

8. Soldering Specification

Mildly activated rosin fluxes are preferred. Our terminations are suitable for re-flow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

8-1. IR Soldering Reflow

Recommended temperature profiles for lead free re-flow soldering in Figure 1, Table 1.1 & 1.2 (J-STD-020E).

8-2. Iron Reflow

Products attachment with a soldering iron is discouraged due to the inherent process control limitations. In the event that a soldering iron must be employed the following precautions are recommended (Figure 2).

ତ

TEM PERATURE(

Note:

- (a) Preheat circuit and products to 150°C.
- (b) 355°C tip temperature (Max.)
- (c) Never contact the ceramic with the iron tip
- (d) 1.0mm tip diameter (Max.)
- (e) Use a 20 watt soldering iron with tip diameter of 1.0mm
- (f) Limit soldering time to 4~5 sec.

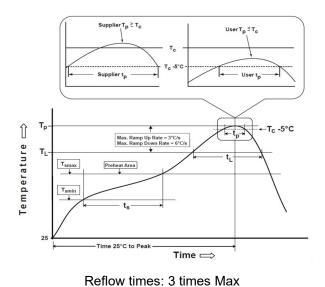
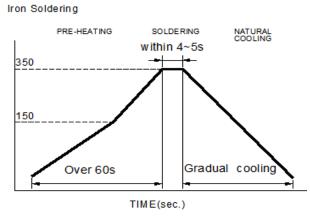



Figure 1: IR Soldering Reflow

Iron Soldering times: 1 times max.

Soldering iron method: 350±5°C Max

Figure 2: Iron soldering temperature profiles

Table (1.1) Reflow Profiles

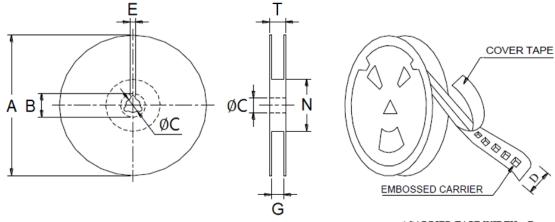
Profile Type:	Pb-Free Assembly
Preheat	
-Temperature Min (T _{smin})	150°C
-Temperature Max (T _{smax})	200°C
-Time (t_s) from $(T_{smin}$ to $T_{smax})$	60-120seconds
Ramp-up rate (T _L to T _p)	3°C /second max.
Liquids temperature (T _L)	217°C
Time (t _L) maintained above T _L	60-150 seconds
Classification temperature (Tc)	See Table (1.2)
Time (t _p) at Tc- 5°C (Tp should be equal to or less than Tc.)	*< 30 seconds
Ramp-down rate $(T_p \text{ to } T_L)$	6°C /second max.
Time 25°C to peak temperature	8 minutes max.

Tp: maximum peak package body temperature, **Tc**: the classification temperature.

For user (customer) **Tp** should be equal to or less than **Tc**.

Table (1.2) Package Thickness/Volume and Classification Temperature (T_c)

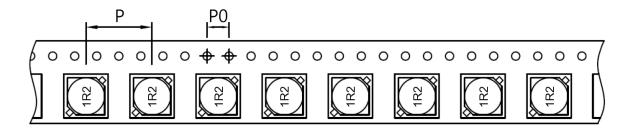
	Package	Volume mm ³	Volume mm ³	Volume
	Thickness	<350	350-2000	mm³ >2000
PB-Free	<1.6mm	260°C	260°C	260°C
	1.6-2.5mm	260°C	250°C	245°C
Assembly	≥2.5mm	250°C	245°C	245°C


Reflow is referred to standard IPC/JEDEC J-STD-020E.

Superworld Electronics

^{*}Tolerance for peak profile temperature (Tp) is defined as a supplier minimum and a user maximum.

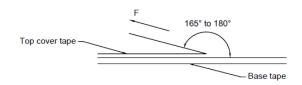
9. Packaging Information


9-1. Reel Dimension (Unit: mm)

*CARRIER TAPE WIDTH: D

T. m. c	Α	В	С	D
Туре	330.0 Ref	21.0 Ref	13.0 Ref	16.0 Ref
40"46	E	G	N	Т
13"x16	2.0 Ref	18.0 Max	50.0 Min	22.4 Ref

9-2. Tape Dimension (Unit: mm)


Р	P0
12	4

9-3. Packaging Type

Inner/Reel			Outer Carton		
Q'TY(PCS)	G.W. (gw)	STYLE	Q'TY(PCS)	G.W. (Kg)	SIZE (cm)
1,000	450	13-16	6,000	6.2	40 x 40 x 24

9-4. Tearing Off Force

The force for tearing off cover tape is according to the follow table, in the arrow direction under the following conditions.

(Referenced ANSI/EIA-481-D-2008 of 4.11 standard)

Room Temp. (°C)	Room Humidity (%)	Room atm (hPa)	Tearing Speed (mm/min)
5~35	45~85	860~1060	300±10

Tape Size	8 mm	12 to 56 mm	72 mm or Wider
Tearing Off Force (grams)	10~100	10~130	10~150

Application Notice

1. Storage Conditions

To maintain the solderability of terminal electrodes:

- (a) Recommended products should be used within 12 months from the time of delivery.
- (b) The packaging material should be kept where no chlorine or sulfur exists in the air.

2. Transportation

- (a) Products should be handled with care to avoid damage or contamination from perspiration and skin oils.
- (b) Vacuum pick up is strongly recommended for individual components.
- (c) Bulk handling should ensure that abrasion and mechanical shock are minimized.

