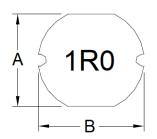
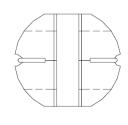
1. Part No. Expression

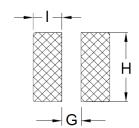
PDC 05021R0 M Z F

- (a)
- (b)
- (c) (d) (e) (f)
- (a) Series Code

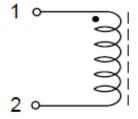

(d) Tolerance Code

(b) Dimension Code


- (e) Special Code
- (c) Inductance Code


(f) Packaging Code

2. Configuration & Dimensions (Unit: mm)


Recommended PCB Layout

Note: 1. The above PCB layout reference only.

2. Marking: Inductance Code

Α	В	С	G	Н	I
5.20±0.30	5.80±0.30	2.50±0.35	1.70 Ref	5.50 Ref	2.15 Ref

3. Schematic

4. Material List

- (a) Core
- (b) Wire
- (c) Electrode

5. General Specifications

- (a) Operating Temp.: -40°C to +85°C (including self-temperature rise)
- (b) All test data referenced to 25°C ambient.
- (c) Heat Rated Current (Irms) will cause the coil temperature rise ΔT of 40°C Max.
- (d) Saturation Current (Isat) will cause inductance L0 to drop approximately 10%.
- (e) Rated Current: The lower value of Isat and Irms.
- (f) Storage Condition (Component in its packaging)

i) Temperature: -10°C to 40°C

ii) Humidity: Less than 60% RH

6. Electrical Characteristics

Part Number	Inductance (uH) @0A ±20%	Test Frequency	DCR (Ω) Max	IDC (A)
PDC05021R0MZF	1.0	1V/7.96MHz	0.030	4.80
PDC05021R4MZF	1.4	1V/7.96MHz	0.035	4.20
PDC05021R8MZF	1.8	1V/7.96MHz	0.040	3.80
PDC05022R2MZF	2.2	1V/7.96MHz	0.050	3.50
PDC05022R7MZF	2.7	1V/7.96MHz	0.055	3.10
PDC05023R3MZF	3.3	1V/7.96MHz	0.070	3.00
PDC05023R9MZF	3.9	1V/7.96MHz	0.080	2.80
PDC05024R7MZF	4.7	1V/7.96MHz	0.090	2.70

	Inductance	Test	DCR	IDC
Part Number	(uH) @0A	Frequency	(Ω)	(A)
	±20%		Max	(A)
PDC05025R6MZF	5.6	1V/7.96MHz	0.110	2.20
PDC05026R8MZF	6.8	1V/7.96MHz	0.140	1.90
PDC05028R2MZF	8.2	1V/7.96MHz	0.150	1.80
PDC0502100MZF	10.0	1V/2.52MHz	0.165	1.50
PDC0502120MZF	12.0	1V/2.52MHz	0.250	1.40
PDC0502150MZF	15.0	1V/2.52MHz	0.280	1.20
PDC0502180MZF	18.0	1V/2.52MHz	0.320	1.10
PDC0502220MZF	22.0	1V/2.52MHz	0.420	1.00
PDC0502270MZF	27.0	1V/2.52MHz	0.450	0.90
PDC0502330MZF	33.0	1V/2.52MHz	0.550	0.80
PDC0502390MZF	39.0	1V/2.52MHz	0.580	0.75
PDC0502470MZF	47.0	1V/2.52MHz	0.830	0.70
PDC0502560MZF	56.0	1V/2.52MHz	0.900	0.65
PDC0502680MZF	68.0	1V/2.52MHz	0.970	0.60
PDC0502820MZF	82.0	1V/2.52MHz	1.200	0.55
PDC0502101MZF	100.0	1V/1KHz	1.500	0.50
PDC0502121MZF	120.0	1V/1KHz	1.700	0.47
PDC0502151MZF	150.0	1V/1KHz	1.950	0.45
PDC0502181MZF	180.0	1V/1KHz	2.600	0.40
PDC0502221MZF	220.0	1V/1KHz	3.400	0.35
PDC0502271MZF	270.0	1V/1KHz	4.000	0.30
PDC0502331MZF	330.0	1V/1KHz	4.500	0.27
PDC0502391MZF	390.0	1V/1KHz	5.000	0.25
PDC0502471MZF	470.0	1V/1KHz	7.000	0.23
PDC0502561MZF	560.0	1V/1KHz	8.000	0.21

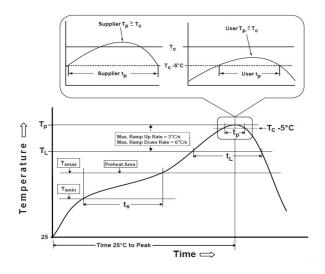
7. Soldering Specification

Mildly activated rosin fluxes are preferred. Our terminations are suitable for re-flow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

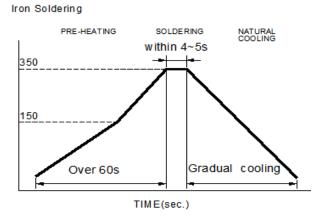
7-1. IR Soldering Reflow

Recommended temperature profiles for lead free re-flow soldering in Figure 1, Table 1.1 & 1.2 (J-STD-020E).

7-2. Iron Reflow


Products attachment with a soldering iron is discouraged due to the inherent process control limitations. In the event that a soldering iron must be employed the following precautions are recommended (Figure 2).

ତ


TEM PERATURE(

Note:

- (a) Preheat circuit and products to 150°C.
- (b) 355°C tip temperature (Max.)
- (c) Never contact the ceramic with the iron tip
- (d) 1.0mm tip diameter (Max.)
- (e) Use a 20 watt soldering iron with tip diameter of 1.0mm
- (f) Limit soldering time to 4~5 sec.

Reflow times: 3 times Max
Figure 1: IR Soldering Reflow

Iron Soldering times: 1 times max.

Soldering iron method: 350±5°C Max

Figure 2: Iron soldering temperature profiles

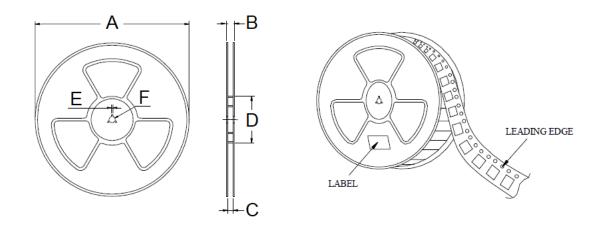
Table (1.1) Reflow Profiles

Profile Type:	Pb-Free Assembly
Preheat	
-Temperature Min (T _{smin})	150°C
-Temperature Max (T _{smax})	200°C
-Time (t_s) from $(T_{smin}$ to $T_{smax})$	60-120seconds
Ramp-up rate (T _L to T _p)	3°C /second max.
Liquids temperature (T _L)	217°C
Time (t _L) maintained above T _L	60-150 seconds
Classification temperature (T _c)	See Table (1.2)
Time (t _p) at Tc- 5°C (Tp should be equal to or less than Tc.)	*< 30 seconds
Ramp-down rate (T _p to T _L)	6°C /second max.
Time 25°C to peak temperature	8 minutes max.

Tp: maximum peak package body temperature, **Tc**: the classification temperature.

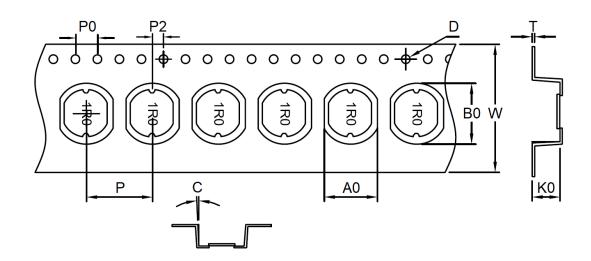
For user (customer) **Tp** should be equal to or less than **Tc**.

Table (1.2) Package Thickness/Volume and Classification Temperature (T_c)

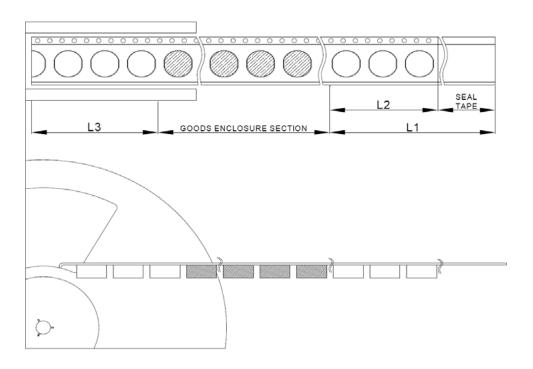

	Package	Volume mm ³	Volume mm ³	Volume
	Thickness	<350	350-2000	mm³ >2000
PB-Free	<1.6mm	260°C	260°C	260°C
	1.6-2.5mm	260°C	250°C	245°C
Assembly	≥2.5mm	250°C	245°C	245°C

Reflow is referred to standard IPC/JEDEC J-STD-020E.

^{*}Tolerance for peak profile temperature (Tp) is defined as a supplier minimum and a user maximum.

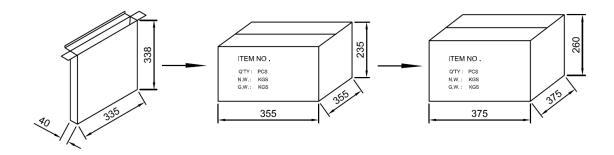

8. Packaging Information

8-1. Reel Dimension (Unit: mm)


Туре	А	В	С	D	E	F
13"x12	330.00	18.40	12.40	100.00	2.30	R6.75

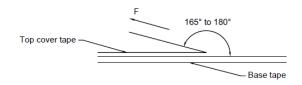
8-2. Tape Dimension (Unit: mm)

W	A0	В0	К0	Р
12.00+0.30/-0.10	5.45±0.10	6.10±0.10	3.10±0.10	8.00±0.10
D	P0	P2	Т	С
1.50+0.10/-0.00	4.00±0.10	2.00±0.10	0.35 Ref	3° Max



L1	LEADER SECTION LENGTH	400mm Min
L2	START CATTIER TAPE LENGTH	170mm Min
L3	TRAILER SECTION LENGTH	170mm Min
QUANTITY	2000 PCS	

8-3. Packaging Quantity (Unit: Pcs)


Chip/ Reel	4,000
Inner Carton	20,000
Outside Carton	20,000

NOTE: Specifications subject to change without notice. Please check our website for latest information.

8-4. Tearing Off Force

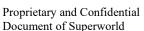
The force for tearing off cover tape is according to the follow table, in the arrow direction under the following conditions.

(Referenced ANSI/EIA-481-D-2008 of 4.11 standard)

Room Temp. (°C)	Room Humidity (%)	Room atm (hPa)	Tearing Speed (mm/min)
5~35	45~85	860~1060	300±10

Tape Size	8 mm	12 to 56 mm	72 mm or Wider
Tearing Off Force (grams)	10~100	10~130	10~150

Application Notice


1. Storage Conditions

To maintain the solderability of terminal electrodes:

- (a) Recommended products should be used within 12 months from the time of delivery.
- (b) The packaging material should be kept where no chlorine or sulfur exists in the air.

2. Transportation

- (a) Products should be handled with care to avoid damage or contamination from perspiration and skin oils.
- (b) Vacuum pick up is strongly recommended for individual components.
- (c) Bulk handling should ensure that abrasion and mechanical shock are minimized.

