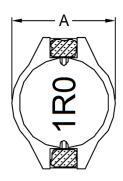
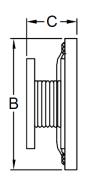
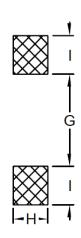
1. Part No. Expression

PDB 1005 1R0 M Z F

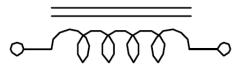

- (a)
- (b)
- (c) (d) (e) (f)
- (a) Series Code


- (d) Tolerance Code
- **Dimension Code**

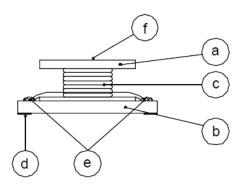

- Special Code
- (c) Inductance Code


Packaging Code

2. Configuration & Dimensions (Unit: mm)


Recommended PCB Layout

Note: 1. The above PCB layout reference only.


2. Marking: Inductance Code

А	В	С	D	E
10.0±0.2	12.7±0.2	5.0±0.3	2.4±0.2	2.2±0.2
F	G	Н	I	-
7.6±0.3	7.3 Ref	2.8 Ref	3.0 Ref	-

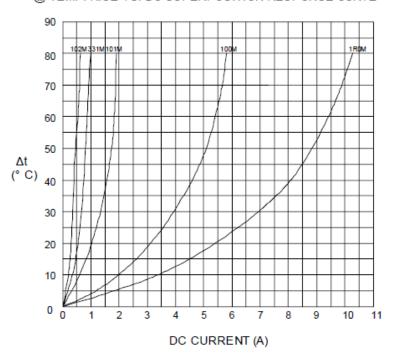
3. Schematic

4. Material List

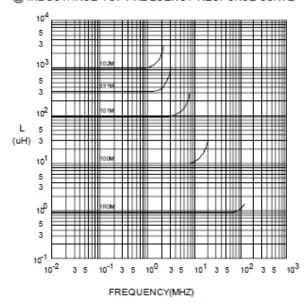
- (a) Core
- (b) Base
- (c) Wire
- (d) Terminal
- (e) Adhesive
- (f) Ink

5. General Specifications

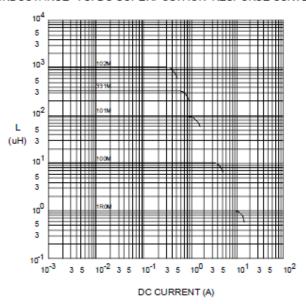
- (a) Operating Temp.: -40°C to +85°C (including self-temperature rise)
- (b) All test data referenced to 25°C ambient.
- (c) Heat Rated Current (Irms) will cause the coil temperature rise ΔT of 40°C Max.
- (d) Saturation Current (Isat) will cause inductance L0 to approximately drop 10%.
- (e) Rated Current: The lower value of Isat and Irms.
- (f) Resistance to solder heat: 260° C.10 secs
- (g) Storage Condition (Component in its packaging)
 - i) Temperature: -10°C to 40°C
 - ii) Humidity: Less than 60% RH


6. Electrical Characteristics

Part Number	Inductance (uH) @0A ±20%	Q Ref	Test Frequency	SRF (MHz) Typ	DCR (mΩ) Max	IDC (A)
PDB10051R0MZF	1.0	50	1V/100KHz	150.0	9	6.8
PDB10051R5MZF	1.5	50	1V/100KHz	100.0	10	6.4
PDB10052R2MZF	2.2	45	1V/100KHz	85.0	12	6.1
PDB10053R3MZF	3.3	35	1V/100KHz	60.0	15	5.4
PDB10054R7MZF	4.7	35	1V/100KHz	45.0	18	4.8
PDB10056R8MZF	6.8	35	1V/100KHz	35.0	27	4.4
PDB1005100MZF	10.0	30	1V/100KHz	25.0	38	3.9
PDB1005150MZF	15.0	30	1V/100KHz	20.0	46	3.1
PDB1005220MZF	22.0	25	1V/100KHz	18.0	85	2.7
PDB1005330MZF	33.0	30	1V/100KHz	14.0	100	2.1
PDB1005470MZF	47.0	20	1V/100KHz	11.0	140	1.8
PDB1005680MZF	68.0	35	1V/100KHz	10.0	200	1.5
PDB1005101MZF	100.0	40	1V/100KHz	7.0	280	1.3
PDB1005151MZF	150.0	40	1V/100KHz	6.5	400	1.0
PDB1005221MZF	220.0	40	1V/100KHz	5.0	610	0.8
PDB1005331MZF	330.0	60	1V/100KHz	4.0	1020	0.6
PDB1005471MZF	470.0	50	1V/100KHz	3.0	1270	0.5
PDB1005681MZF	680.0	65	1V/100KHz	2.5	2020	0.4
PDB1005102MZF	1000.0	60	1V/100KHz	2.0	3000	0.3



7. Characteristics Curves



@ INDUCTANCE VS. FREQUENCY RESPONSE CURVE

@ INDUCTANCE VS. DC SUPERPOSITION RESPONSE CURVE

8. Soldering Specification

Mildly activated rosin fluxes are preferred. Our terminations are suitable for re-flow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

8-1. IR Soldering Reflow

Recommended temperature profiles for lead free re-flow soldering in Figure 1, Table 1.1 & 1.2 (J-STD-020E).

8-2. Iron Reflow

Products attachment with a soldering iron is discouraged due to the inherent process control limitations. In the event that a soldering iron must be employed the following precautions are recommended (Figure 2).

Note:

- (a) Preheat circuit and products to 150°C.
- (b) 355°C tip temperature (Max.)
- (c) Never contact the ceramic with the iron tip
- (d) 1.0mm tip diameter (Max.)
- (e) Use a 20 watt soldering iron with tip diameter of 1.0mm
- (f) Limit soldering time to 4~5 sec.

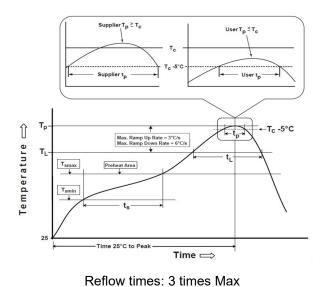
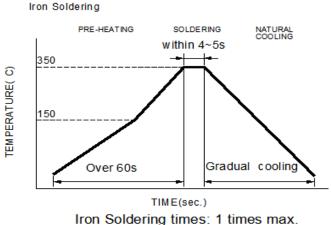



Figure 1: IR Soldering Reflow

Soldering iron method: 350±5°C Max Figure 2: Iron soldering temperature profiles

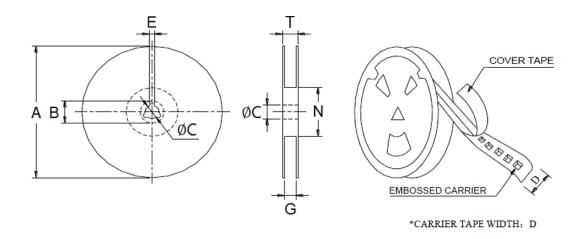
Table (1.1) Reflow Profiles

Profile Type:	Pb-Free Assembly
Preheat	
-Temperature Min (T _{smin})	150°C
-Temperature Max (T _{smax})	200°C
-Time (t_s) from $(T_{smin}$ to $T_{smax})$	60-120seconds
Ramp-up rate (T _L to T _p)	3°C /second max.
Liquids temperature (T _L)	217°C
Time (t _L) maintained above T _L	60-150 seconds
Classification temperature (T _c)	See Table (1.2)
Time (t _p) at Tc- 5°C (Tp should be equal to or less than Tc.)	*< 30 seconds
Ramp-down rate (T _p to T _L)	6°C /second max.
Time 25°C to peak temperature	8 minutes max.

Tp: maximum peak package body temperature, **Tc**: the classification temperature.

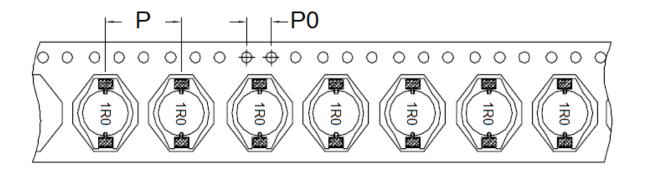
For user (customer) **Tp** should be equal to or less than **Tc**.

Table (1.2) Package Thickness/Volume and Classification Temperature (Tc)


	Package	Volume mm ³	Volume mm ³	Volume
	Thickness	<350	350-2000	mm³ >2000
PB-Free	<1.6mm	260°C	260°C	260°C
	1.6-2.5mm	260°C	250°C	245°C
Assembly	≥2.5mm	250°C	245°C	245°C

Reflow is referred to standard IPC/JEDEC J-STD-020E.

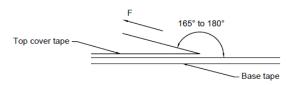
^{*}Tolerance for peak profile temperature (Tp) is defined as a supplier minimum and a user maximum.


9. Packaging Information

9-1. Reel Dimension (Unit: mm)

Туре	Α	В	С	D
	330.0 Ref	21.0 Ref	13.0 Ref	24.0 Ref
42"v24	E	G	N	Т
13"x24	2.0 Ref	26.0 Max	50.0 Min	30.4 Ref

9-2. Tape Dimension (Unit: mm)


Р	P0
16	4

9-3. Packaging Type

INNER : REEL			OUTER : CARTON		
Q'TY(PCS) G.W. (gw) STYLE		Q'TY(PCS) G.W. (Kg) SIZE(cm)		SIZE(cm)	
600	1,100	13-24	2,400	7.9	40 x 40 x 24

9-4. Tearing Off Force

The force for tearing off cover tape is according to the follow table, in the arrow direction under the following conditions.

(Referenced ANSI/EIA-481-D-2008 of 4.11 standard)

Room Temp. (°C)	Room Humidity (%)	Room atm (hPa)	Tearing Speed (mm/min)
5~35	45~85	860~1060	300±10

Tape Size	8 mm	12 to 56 mm	72 mm or Wider
Tearing Off Force (grams)	10~100	10~130	10~150

Application Notice

1. Storage Conditions

To maintain the solderability of terminal electrodes:

- (a) Recommended products should be used within 12 months from the time of delivery.
- (b) The packaging material should be kept where no chlorine or sulfur exists in the air.

2. Transportation

- (a) Products should be handled with care to avoid damage or contamination from perspiration and skin oils.
- (b) Vacuum pick up is strongly recommended for individual components.
- (c) Bulk handling should ensure that abrasion and mechanical shock are minimized.

