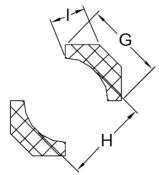
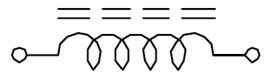

1. Part No. Expression


SSC 1005 2 R 4 Y Z F

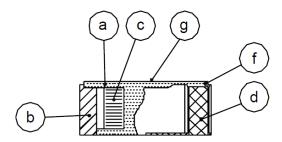
- (a)
- (b)
- (c) (d) (e) (f)
- (a) Series Code

- (d) Tolerance Code
- (b) Dimension Code
- (e) Special Code
- (c) Inductance Code
- (f) Packaging Code

2. Configuration & Dimensions (Unit: mm)


Recommended PCB Layout

Note: 1. The above PCB layout reference only.


2. Marking: Inductance Code

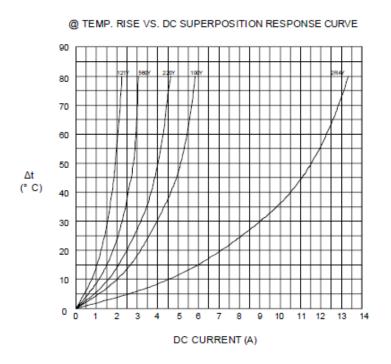
А	В	С	D	E
10.0±0.3	10.0±0.3	5.0 Max	6.8 Ref	11.5 Ref
F	G	Н	I	-
7.7 Ref	7.3 Ref	7.2 Ref	3.5 Ref	-

3. Schematic

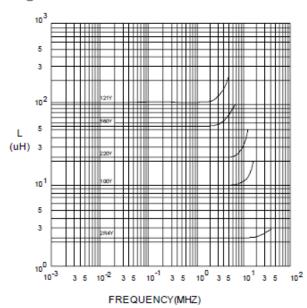
4. Material List

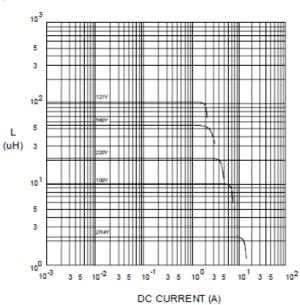
- (a) DR Core
- (b) RI Core
- (c) Wire
- (d) Terminal
- (e) Adhesive
- (f) Adhesive
- (g) Ink

5. General Specifications


- (a) Operating Temp.: -40°C to +105°C (including self-temperature rise)
- (b) All test data referenced to 25°C ambient.
- (c) Heat Rated Current (Irms) will cause the coil temperature rise approximately ΔT of 40°C.
- (d) Saturation Current (Isat) will cause inductance L0 to drop approximately 35%.
- (e) Rated Current: The lower value of Isat and Irms.
- (f) Resistance to solder heat: 260° C,10 secs.
- (g) Storage Condition (Component in its packaging)
 - i) Temperature: -10°C to 40°C
 - ii) Humidity: Less than 60% RH

6. Electrical Characteristics


Part Number	Inductance (µH) @0A ±30%	Test Frequency	DCR (mΩ) Max	Isat (A)	Irms (A)	SRF (MHz) Typ
SSC10052R4YZF	2.4±30%	1V/100KHz	12.5	11.5	9.6	50.0
SSC10053R6YZF	3.6±30%	1V/100KHz	15.0	9.4	8.2	40.0
SSC10055R0YZF	5.0±30%	1V/100KHz	16.9	8.0	6.8	35.0
SSC10056R6YZF	6.6±30%	1V/100KHz	22.5	7.1	5.7	30.0
SSC10058R5YZF	8.5±30%	1V/100KHz	28.8	6.3	4.8	25.0
SSC1005100YZF	10.0±30%	1V/100KHz	40.0	5.5	4.3	22.0
SSC1005120YZF	12.0±30%	1V/100KHz	42.5	4.9	3.6	20.0
SSC1005150YZF	15.0±30%	1V/100KHz	46.0	4.5	3.4	18.0
SSC1005180YZF	18.0±30%	1V/100KHz	50.0	4.1	3.2	16.0
SSC1005220YZF	22.0±30%	1V/100KHz	56.0	4.0	2.8	15.0
SSC1005270YZF	27.0±30%	1V/100KHz	63.0	3.6	2.7	14.0
SSC1005330YZF	33.0±30%	1V/100KHz	90.0	3.1	2.1	12.0
SSC1005390YZF	39.0±30%	1V/100KHz	105.0	3.0	1.9	11.0
SSC1005470YZF	47.0±30%	1V/100KHz	120.0	2.6	1.8	10.0
SSC1005560YZF	56.0±30%	1V/100KHz	150.0	2.4	1.6	9.0
SSC1005680YZF	68.0±30%	1V/100KHz	175.0	2.1	1.5	8.0
SSC1005820YZF	82.0±30%	1V/100KHz	220.0	2.0	1.3	7.0
SSC1005101YZF	100.0±30%	1V/100KHz	275.0	1.8	1.1	6.0
SSC1005121YZF	120.0±30%	1V/100KHz	312.5	1.6	1.0	5.0


7. Characteristics Curves

@ INDUCTANCE VS. DC SUPERPOSITION RESPONSE CURVE

8. Soldering Specification

Mildly activated rosin fluxes are preferred. Our terminations are suitable for re-flow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

8-1. IR Soldering Reflow

Recommended temperature profiles for lead free re-flow soldering in Figure 1, Table 1.1 & 1.2 (J-STD-020E).

8-2. Iron Reflow

Products attachment with a soldering iron is discouraged due to the inherent process control limitations. In the event that a soldering iron must be employed the following precautions are recommended (Figure 2).

ତ

TEM PERATURE(

Note:

- (a) Preheat circuit and products to 150°C.
- (b) 355°C tip temperature (Max.)
- (c) Never contact the ceramic with the iron tip
- (d) 1.0mm tip diameter (Max.)
- (e) Use a 20 watt soldering iron with tip diameter of 1.0mm
- (f) Limit soldering time to 4~5 sec.

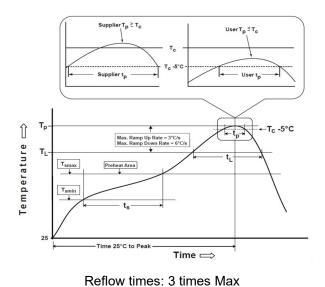
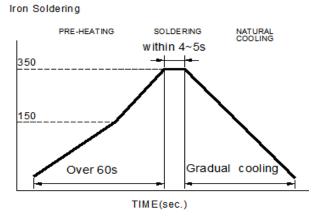



Figure 1: IR Soldering Reflow

Iron Soldering times: 1 times max.

Soldering iron method: 350±5°C Max

Figure 2: Iron soldering temperature profiles

Table (1.1) Reflow Profiles

Profile Type:	Pb-Free Assembly
Preheat	
-Temperature Min (T _{smin})	150°C
-Temperature Max (T _{smax})	200°C
-Time (t_s) from $(T_{smin}$ to $T_{smax})$	60-120seconds
Ramp-up rate (T _L to T _p)	3°C /second max.
Liquids temperature (T _L)	217°C
Time (t _L) maintained above T _L	60-150 seconds
Classification temperature (T _c)	See Table (1.2)
Time (t _p) at Tc- 5°C (Tp should be equal to or less than Tc.)	*< 30 seconds
Ramp-down rate (T _p to T _L)	6°C /second max.
Time 25°C to peak temperature	8 minutes max.

Tp: maximum peak package body temperature, **Tc**: the classification temperature.

For user (customer) **Tp** should be equal to or less than **Tc**.

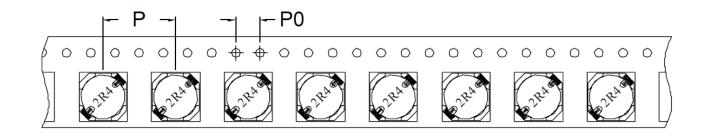
Table (1.2) Package Thickness/Volume and Classification Temperature (T_c)

	Package	Volume mm ³	Volume mm ³	Volume
	Thickness	<350	350-2000	mm³ >2000
PB-Free	<1.6mm	260°C	260°C	260°C
	1.6-2.5mm	260°C	250°C	245°C
Assembly	≥2.5mm	250°C	245°C	245°C

Reflow is referred to standard IPC/JEDEC J-STD-020E.

Superworld Electronics

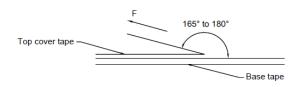
^{*}Tolerance for peak profile temperature (Tp) is defined as a supplier minimum and a user maximum.


9. Packaging Information

9-1. Reel Dimension (Unit: mm)

Туре	А	В	С	D	E	G	N	Т
13"x24mm	330.0 Ref	21.0 Ref	13.0 Ref	24.0 Ref	2.0 Ref	26.0 Max	50.0 Min	30.4 Ref

9-2. Tape Dimension (Unit: mm)


Р	P0
8	4

9-3. Packaging Quantity (Unit: Pcs)

INNER : REEL			OUTER : CARTON		
QTY(PCS) G.W(gw) STYLE		QTY(PCS)	G.W.(Kg)	SIZE(cm)	
600	900	13-24	2,400	7.1	40 x 40 x 24

9-4. Tearing Off Force

The force for tearing off cover tape is according to the follow table, in the arrow direction under the following conditions.

(Referenced ANSI/EIA-481-D-2008 of 4.11 standard)

Room Temp. (°C)	Room Humidity (%)	Room atm (hPa)	Tearing Speed (mm/min)
5~35	45~85	860~1060	300±10

Tape Size	8 mm	12 to 56 mm	72 mm or Wider
Tearing Off Force (grams)	10~100	10~130	10~150

Application Notice

Storage Conditions

To maintain the solderability of terminal electrodes:

- (a) Recommended products should be used within 12 months from the time of delivery.
- (b) The packaging material should be kept where no chlorine or sulfur exists in the air.

2. Transportation

- (a) Products should be handled with care to avoid damage or contamination from perspiration and skin oils.
- (b) Vacuum pick up is strongly recommended for individual components.
- (c) Bulk handling should ensure that abrasion and mechanical shock are minimized.

