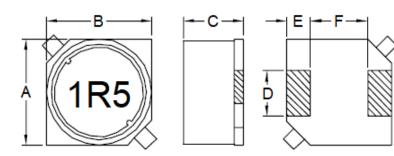
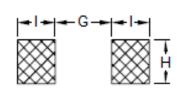
1. Part No. Expression

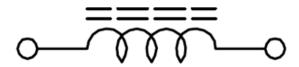

<u>SSB10031R5MZF</u>


- (a)
- (b)
- (c) (d) (e) (f)
- (a) Series Code

- (d) Tolerance Code
- (b) Dimension Code

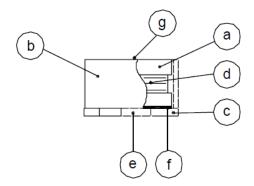
- (e) Special Code
- (c) Inductance Code
- (f) Packaging Code

2. Configuration & Dimensions (Unit: mm)



Recommended PCB Layout

Note: 1. The above PCB layout reference only.


А	В	С	D	E
10.0±0.3	10.0±0.3	3.0±0.3	2.4±0.2	2.0±0.2
F	G	Н	I	-
6.0±0.2	5.7 Ref	2.8 Ref	2.5 Ref	-

3. Schematic

4. Material List

- (a) DR Core
- (b) RI Core
- (c) Base
- (d) Wire
- (e) Terminal
- (f) Adhesive
- (g) Ink

5. General Specifications

(a) Operating Temp.: -40°C to +125°C (including self-temperature rise)

(b) Storage Temp.: -40°C to +125°C (on board

(c) All test data referenced to 25°C ambient.

(d) Heat Rated Current (Irms) will cause the coil temperature rise ΔT of 40°C Max.

(e) Saturation Current (Isat) will cause inductance L0 to drop 30% Max.

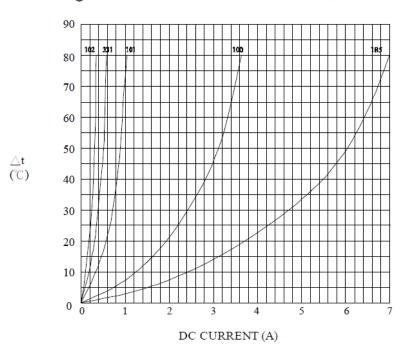
(f) Rated Current: The lower value of Isat and Irms.

(g) Storage Condition (Component in its packaging)

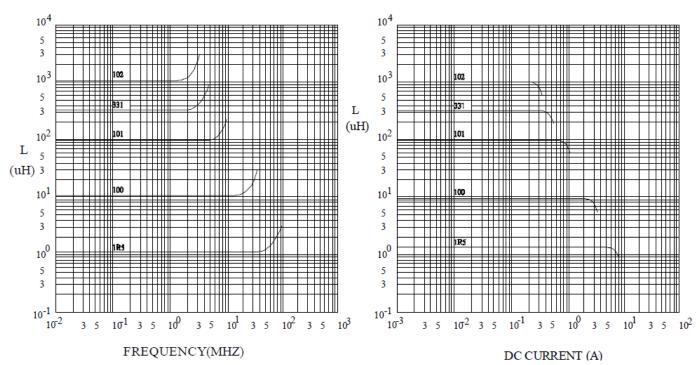
i) Temperature: Less than 40°Cii) Humidity: Less than 60% RH

6. Electrical Characteristics

Part Number	Inductance (uH) ±20%	Test Frequency	RDC (mΩ) Max	IDC (A) Max
SSB10031R5MZF	1.5	1V/100KHz	22	4.00
SSB10032R2MZF	2.2	1V/100KHz	25	3.50
SSB10033R0MZF	3.0	1V/100KHz	40	3.00
SSB10035R2MZF	5.2	1V/100KHz	45	2.50
SSB10036R8MZF	6.8	1V/100KHz	60	2.20



Part Number	Inductance (uH) ±20%	Test Frequency	RDC (mΩ) Max	IDC (A) Max
SSB1003100MZF	10	1V/100KHz	70	2.00
SSB1003120MZF	12	1V/100KHz	95	1.90
SSB1003150MZF	15	1V/100KHz	120	1.70
SSB1003180MZF	18	1V/100KHz	130	1.55
SSB1003220MZF	22	1V/100KHz	180	1.45
SSB1003270MZF	27	1V/100KHz	200	1.30
SSB1003330MZF	33	1V/100KHz	210	1.10
SSB1003390MZF	39	1V/100KHz	270	1.00
SSB1003470MZF	47	1V/100KHz	300	0.85
SSB1003560MZF	56	1V/100KHz	400	0.80
SSB1003680MZF	68	1V/100KHz	440	0.75
SSB1003820MZF	82	1V/100KHz	490	0.65
SSB1003101MZF	100	1V/100KHz	670	0.60
SSB1003121MZF	120	1V/100KHz	740	0.55
SSB1003151MZF	150	1V/100KHz	790	0.50
SSB1003181MZF	180	1V/100KHz	1200	0.45
SSB1003221MZF	220	1V/100KHz	1350	0.40
SSB1003271MZF	270	1V/100KHz	1800	0.38
SSB1003331MZF	330	1V/100KHz	2000	0.32
SSB1003391MZF	390	1V/100KHz	2100	0.30
SSB1003471MZF	470	1V/100KHz	3500	0.28
SSB1003561MZF	560	1V/100KHz	3900	0.25
SSB1003681MZF	680	1V/100KHz	4100	0.22
SSB1003821MZF	820	1V/100KHz	4550	0.20
SSB1003102MZF	1000	1V/100KHz	5100	0.18


7. Characteristics Curves

@ TEMP. RISE VS. DC SUPERPOSITION RESPONSE CURVE

@ INDUCTANCE VS. FREQUENCY RESPONSE CURVE

@ INDUCTANCE VS. DC SUPERPOSITION RESPONSE CURVE

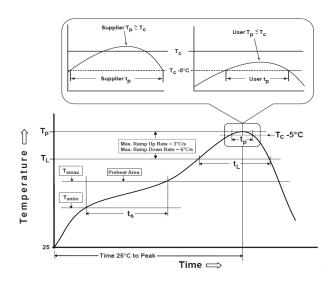
8. Soldering Specification

Mildly activated rosin fluxes are preferred. Our terminations are suitable for re-flow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

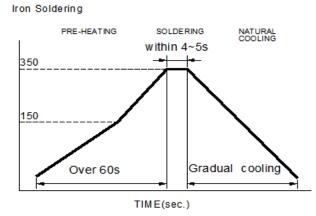
8-1. IR Soldering Reflow

Recommended temperature profiles for lead free re-flow soldering in Figure 1, Table 1.1 & 1.2 (J-STD-020E).

8-2. Iron Reflow


Products attachment with a soldering iron is discouraged due to the inherent process control limitations. In the event that a soldering iron must be employed the following precautions are recommended (Figure 2).

ତ


TEM PERATURE(

Note:

- (a) Preheat circuit and products to 150°C.
- (b) 355°C tip temperature (Max.)
- (c) Never contact the ceramic with the iron tip
- (d) 1.0mm tip diameter (Max.)
- (e) Use a 20 watt soldering iron with tip diameter of 1.0mm
- (f) Limit soldering time to 4~5 sec.

Reflow times: 3 times Max
Figure 1: IR Soldering Reflow

Iron Soldering times: 1 times max.

Soldering iron method: 350±5°C Max

Figure 2: Iron soldering temperature profiles

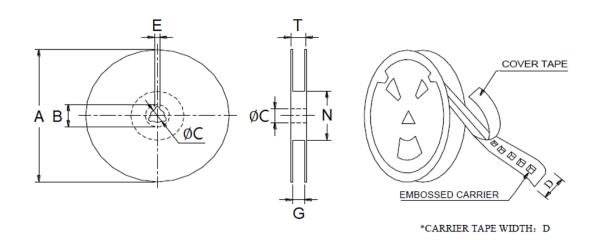
Table (1.1) Reflow Profiles

Profile Type:	Pb-Free Assembly
Preheat	
-Temperature Min (T _{smin})	150°C
-Temperature Max (T _{smax})	200°C
-Time (t_s) from $(T_{smin}$ to $T_{smax})$	60-120seconds
Ramp-up rate (T _L to T _p)	3°C /second max.
Liquids temperature (T _L)	217°C
Time (t _L) maintained above T _L	60-150 seconds
Classification temperature (Tc)	See Table (1.2)
Time (t _p) at Tc- 5°C (Tp should be equal to or less than Tc.)	*< 30 seconds
Ramp-down rate $(T_p \text{ to } T_L)$	6°C /second max.
Time 25°C to peak temperature	8 minutes max.

Tp: maximum peak package body temperature, **Tc**: the classification temperature.

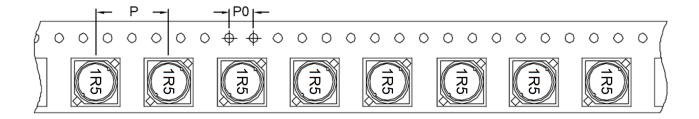
For user (customer) **Tp** should be equal to or less than **Tc**.

Table (1.2) Package Thickness/Volume and Classification Temperature (T_c)


	Package	Volume mm ³	Volume mm ³	Volume
	Thickness	<350	350-2000	mm³ >2000
PB-Free	<1.6mm	260°C	260°C	260°C
	1.6-2.5mm	260°C	250°C	245°C
Assembly	≥2.5mm	250°C	245°C	245°C

Reflow is referred to standard IPC/JEDEC J-STD-020E.

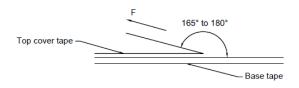
^{*}Tolerance for peak profile temperature (Tp) is defined as a supplier minimum and a user maximum.


9. Packaging Information

9-1. Reel Dimension (Unit: mm)

Туре	А	В	С	D	G	Ν	Т
13"x24mr	n 330.0 Ref	21.0 Ref	13.0 Ref	24.0 Ref	26.0 Max	50.0 Min	30.4 Ref

9-2. Tape Dimension (Unit: mm)


Р	P0
16	4

9-3. Packaging Quantity (Unit: Pcs)

Inner: Reel				Outer: Carto	n
Qty (pcs)	G.W (gw)	Style	Qty (pcs)	G.W(kg)	Size (cm)
1,000	1,000	13-24	4,000	7.5	38 x 36.5 x 21

9-4. Tearing Off Force

The force for tearing off cover tape is according to the follow table, in the arrow direction under the following conditions.

(Referenced ANSI/EIA-481-D-2008 of 4.11 standard)

Room Temp. (°C)	Room Humidity (%)	Room atm (hPa)	Tearing Speed (mm/min)
5~35	45~85	860~1060	300±10

Tape Size	8 mm	12 to 56 mm	72 mm or Wider
Tearing Off Force (grams)	10~100	10~130	10~150

Application Notice

1. Storage Conditions

To maintain the solderability of terminal electrodes:

- (a) Recommended products should be used within 12 months from the time of delivery.
- (b) The packaging material should be kept where no chlorine or sulfur exists in the air.

2. Transportation

- (a) Products should be handled with care to avoid damage or contamination from perspiration and skin oils.
- (b) Vacuum pick up is strongly recommended for individual components.
- (c) Bulk handling should ensure that abrasion and mechanical shock are minimized.

