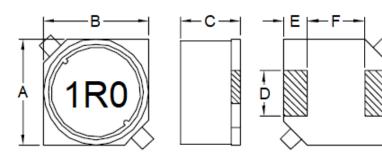
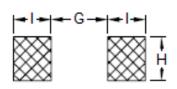
1. Part No. Expression

<u>SSB06041R0MZ</u>F

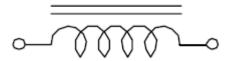

- (a)
- (b)
- (c) (d) (e) (f)
- (a) Series Code


(d) Tolerance Code

Dimension Code

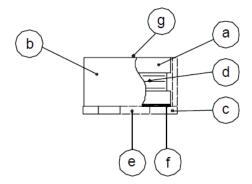
- Special Code
- (c) Inductance Code
- **Packaging Code**

2. Configuration & Dimensions (Unit: mm)



Recommended PCB Layout

Note: The above PCB layout reference only.


А	В	С	D	E
6.0±0.3	6.0±0.3	3.9±0.3	2.0±0.2	1.5±0.2
F	G	Н	I	-
3.0±0.2	2.8 Ref	2.2 Ref	1.9 Ref	-

3. Schematic

4. Material List

- (a) DR Core
- (b) RI Core
- (c) Base
- (d) Wire
- (e) Terminal
- (f) Adhesive
- (g) Ink

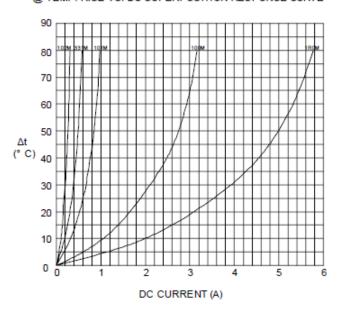
5. General Specifications

- (a) Operating Temp.: -40°C to +85°C (including self-temperature rise)
- (b) All test data referenced to 25°C ambient.
- (c) Heat Rated Current (Irms) will cause the coil temperature rise ΔT of 40°C Max.
- (d) Saturation Current (Isat) will cause inductance L0 to drop 10% Max.
- (e) Rated Current: The lower value of Isat and Irms.
- (f) Resistance to Solder Heat: 260°C, 10Sec.
- (g) Storage Condition (Component in its packaging)

i) Temperature: -10°C to 40°Cii) Humidity: Less than 60% RH

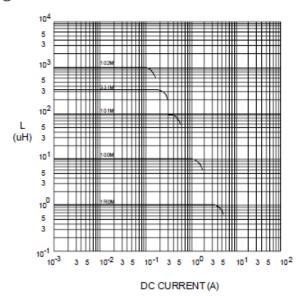
6. Electrical Characteristics

Part Number	Inductance (uH) ±20%	Test Frequency	RDC (mΩ) Max	IDC (A) Max
SSB06041R0MZF	1.0	1V/100KHz	22	2.50
SSB06041R5MZF	1.5	1V/100KHz	25	2.20
SSB06042R2MZF	2.2	1V/100KHz	30	1.90
SSB06043R3MZF	3.3	1V/100KHz	35	1.70
SSB06044R7MZF	4.7	1V/100KHz	50	1.30



Part Number	Inductance (uH) ±20%	Test Frequency	RDC (mΩ) Max	IDC (A) Max
SSB06046R8MZF	6.8	1V/100KHz	55	1.10
SSB0604100MZF	10.0	1V/100KHz	65	1.00
SSB0604120MZF	12.0	1V/100KHz	90	0.90
SSB0604150MZF	15.0	1V/100KHz	100	0.80
SSB0604180MZF	18.0	1V/100KHz	110	0.70
SSB0604220MZF	22.0	1V/100KHz	150	0.65
SSB0604270MZF	27.0	1V/100KHz	170	0.60
SSB0604330MZF	33.0	1V/100KHz	220	0.55
SSB0604390MZF	39.0	1V/100KHz	240	0.50
SSB0604470MZF	47.0	1V/100KHz	300	0.47
SSB0604560MZF	56.0	1V/100KHz	340	0.42
SSB0604680MZF	68.0	1V/100KHz	390	0.40
SSB0604820MZF	82.0	1V/100KHz	500	0.35
SSB0604101MZF	100.0	1V/100KHz	570	0.32
SSB0604121MZF	120.0	1V/100KHz	630	0.30
SSB0604151MZF	150.0	1V/100KHz	900	0.27
SSB0604181MZF	180.0	1V/100KHz	990	0.25
SSB0604221MZF	220.0	1V/100KHz	1150	0.22
SSB0604271MZF	270.0	1V/100KHz	1550	0.20
SSB0604331MZF	330.0	1V/100KHz	1760	0.18
SSB0604391MZF	390.0	1V/100KHz	2600	0.17
SSB0604471MZF	470.0	1V/100KHz	3000	0.16
SSB0604561MZF	560.0	1V/100KHz	3300	0.15
SSB0604681MZF	680.0	1V/100KHz	3700	0.13
SSB0604821MZF	820.0	1V/100KHz	4900	0.12
SSB0604102MZF	1000.0	1V/100KHz	5700	0.11

7. Characteristics Curves



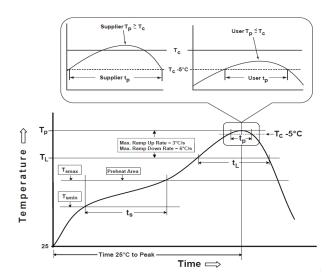
@ INDUCTANCE VS. FREQUENCY RESPONSE CURVE

@ INDUCTANCE VS. DC SUPERPOSITION RESPONSE CURVE

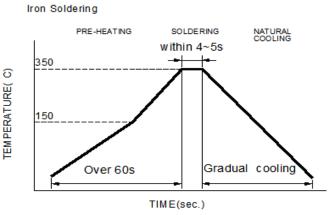
8. Soldering Specification

Mildly activated rosin fluxes are preferred. Our terminations are suitable for re-flow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

8-1. IR Soldering Reflow


Recommended temperature profiles for lead free re-flow soldering in Figure 1, Table 1.1 & 1.2 (J-STD-020E).

8-2. Iron Reflow


Products attachment with a soldering iron is discouraged due to the inherent process control limitations. In the event that a soldering iron must be employed the following precautions are recommended (Figure 2).

Note:

- (a) Preheat circuit and products to 150°C.
- (b) 355°C tip temperature (Max.)
- (c) Never contact the ceramic with the iron tip
- (d) 1.0mm tip diameter (Max.)
- (e) Use a 20 watt soldering iron with tip diameter of 1.0mm
- (f) Limit soldering time to 4~5 sec.

Reflow times: 3 times Max
Figure 1: IR Soldering Reflow

Iron Soldering times: 1 times max.

Soldering iron method: 350±5°C Max

Figure 2: Iron soldering temperature profiles

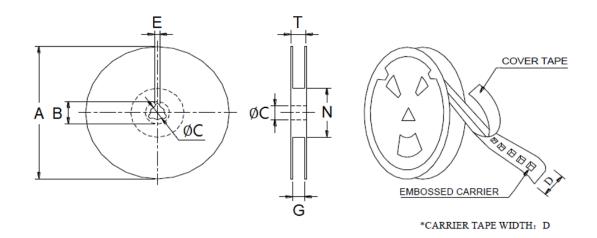
Table (1.1) Reflow Profiles

Profile Type:	Pb-Free Assembly
Preheat	
-Temperature Min (T _{smin})	150°C
-Temperature Max (T _{smax})	200°C
-Time (t_s) from $(T_{smin}$ to $T_{smax})$	60-120seconds
Ramp-up rate (T _L to T _p)	3°C /second max.
Liquids temperature (T _L)	217°C
Time (t _L) maintained above T _L	60-150 seconds
Classification temperature (T _c)	See Table (1.2)
Time (t _p) at Tc- 5°C (Tp should be equal to or less than Tc.)	*< 30 seconds
Ramp-down rate (T _p to T _L)	6°C /second max.
Time 25°C to peak temperature	8 minutes max.

Tp: maximum peak package body temperature, **Tc**: the classification temperature.

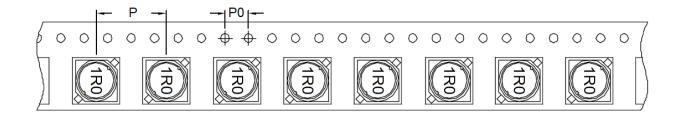
For user (customer) **Tp** should be equal to or less than **Tc**.

Table (1.2) Package Thickness/Volume and Classification Temperature (T_c)


	Package	Volume mm ³	Volume mm ³	Volume
	Thickness	<350	350-2000	mm³ >2000
PB-Free	<1.6mm	260°C	260°C	260°C
	1.6-2.5mm	260°C	250°C	245°C
Assembly	≥2.5mm	250°C	245°C	245°C

Reflow is referred to standard IPC/JEDEC J-STD-020E.

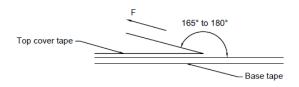
^{*}Tolerance for peak profile temperature (Tp) is defined as a supplier minimum and a user maximum.


9. Packaging Information

9-1. Reel Dimension (Unit: mm)

Т	уре	Α	В	С	D	G	N	Т
13"x	(16mm	330.0 Ref	21.0 Ref	13.0 Ref	16.0 Ref	18.0 Max	50.0 Min	22.4 Ref

9-2. Tape Dimension (Unit: mm)


Р	P0
12	4

9-3. Packaging Quantity (Unit: Pcs)

	Inner: Reel			Outer: Carton		
	Qty (pcs)	G.W (gw)	Style	Qty (pcs)	G.W(kg)	Size (cm)
Ī	1,000	950	13-16	6,000	9.2	40 x 40 x 24

9-4. Tearing Off Force

The force for tearing off cover tape is according to the follow table, in the arrow direction under the following conditions.

(Referenced ANSI/EIA-481-D-2008 of 4.11 standard)

Room Temp. (°C)	Room Humidity (%)	Room atm (hPa)	Tearing Speed (mm/min)
5~35	45~85	860~1060	300±10

Tape Size	8 mm	12 to 56 mm	72 mm or Wider
Tearing Off Force (grams)	10~100	10~130	10~150

Application Notice

1. Storage Conditions

To maintain the solderability of terminal electrodes:

- (a) Recommended products should be used within 12 months from the time of delivery.
- (b) The packaging material should be kept where no chlorine or sulfur exists in the air.

2. Transportation

- (a) Products should be handled with care to avoid damage or contamination from perspiration and skin oils.
- (b) Vacuum pick up is strongly recommended for individual components.
- (c) Bulk handling should ensure that abrasion and mechanical shock are minimized.

