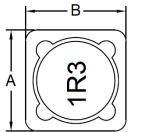
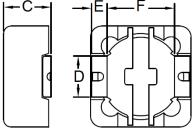
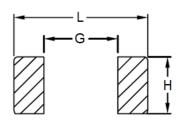
1. Part No. Expression

SDC 12051R3 Y F

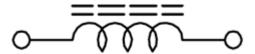

- (a)
- (b)
- (c) (d) (e)
- (a) Series Code


- (d) Tolerance Code
- (b) Dimension Code

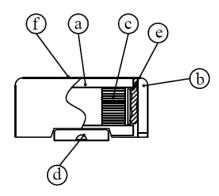

(e) Packaging Code

(c) Inductance Code

2. Configuration & Dimensions (Unit: mm)


Recommended PCB Layout

Note: 1. The above PCB layout reference only.


2. Marking: Inductance Code

А	В	С	D	E
12.8 Max	12.8 Max	6.0 Max	5.0 Ref	2.2 Ref
F	G	Н	L	-
7.6 Ref	7.0 Ref	5.4 Ref	12.8 Ref	-

3. Schematic

4. Material List

- (a) Core
- (b) Core
- (c) Wire
- (d) Clip
- (e) Adhesive
- (f) Ink

5. General Specifications

- (a) Operating Temp.: -40°C to +125°C (including self-temperature rise)
- (b) Storage Temp.: -40°C to +125°C (on board)
- (c) All test data referenced to 25°C ambient.
- (d) Heat Rated Current (Irms) will cause the coil temperature rise approximately ΔT of 40°C.
- (e) Saturation Current (Isat) will cause inductance L0 to drop 35% Max.
- (f) Rated Current: The lower value of Isat and Irms.
- (g) Storage Condition (Component in its packaging)
 - i) Temperature: Less than 40°C
 - ii) Humidity: Less than 60% RH

6. Electrical Characteristics

Part Number	Inductance (uH) @0A	Test Frequency	DCR (mΩ) Max	IDC (A) Max
SDC12051R3YF	1.3	1V/100KHz	12	8.00
SDC12052R1YF	2.1	1V/100KHz	14	7.00
SDC12053R1YF	3.1	1V/100KHz	17	6.00
SDC12054R4YF	4.4	1V/100KHz	20	5.00
SDC12055R8YF	5.8	1V/100KHz	21	4.40
SDC12057R5YF	7.5	1V/100KHz	24	4.20
SDC1205100MF	10	1V/1KHz	25	4.00
SDC1205120MF	12	1V/1KHz	27	3.50
SDC1205150MF	15	1V/1KHz	30	3.30
SDC1205180MF	18	1V/1KHz	34	3.00
SDC1205220MF	22	1V/1KHz	36	2.80
SDC1205270MF	27	1V/1KHz	51	2.30
SDC1205330MF	33	1V/1KHz	57	2.10
SDC1205390MF	39	1V/1KHz	68	2.00
SDC1205470MF	47	1V/1KHz	75	1.80
SDC1205560MF	56	1V/1KHz	110	1.70
SDC1205680MF	68	1V/1KHz	120	1.50
SDC1205820MF	82	1V/1KHz	140	1.40
SDC1205101MF	100	1V/1KHz	160	1.30
SDC1205121MF	120	1V/1KHz	170	1.10
SDC1205151MF	150	1V/1KHz	230	1.00
SDC1205181MF	180	1V/1KHz	290	0.90
SDC1205221MF	220	1V/1KHz	400	0.80
SDC1205271MF	270	1V/1KHz	460	0.75

Note:

Tolerance Code: M=±20%, Y=±30%

Part Number	Inductance (uH) @0A	Test Frequency	DCR (mΩ) Max	IDC (A) Max
SDC1205331MF	330	1V/1KHz	510	0.68
SDC1205391MF	390	1V/1KHz	690	0.65
SDC1205471MF	470	1V/1KHz	770	0.58
SDC1205561MF	560	1V/1KHz	860	0.54
SDC1205681MF	680	1V/1KHz	1200	0.48
SDC1205821MF	820	1V/1KHz	1340	0.43
SDC1205102MF	1000	1V/1KHz	1530	0.40

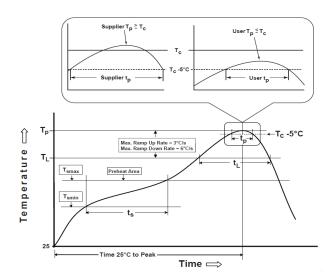
Note:

Tolerance Code: M=±20%, Y=±30%

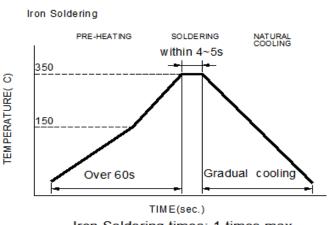
7. Soldering Specification

Mildly activated rosin fluxes are preferred. Our terminations are suitable for re-flow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

7-1. IR Soldering Reflow


Recommended temperature profiles for lead free re-flow soldering in Figure 1, Table 1.1 & 1.2 (J-STD-020E).

7-2. Iron Reflow


Products attachment with a soldering iron is discouraged due to the inherent process control limitations. In the event that a soldering iron must be employed the following precautions are recommended (Figure 2).

Note:

- (a) Preheat circuit and products to 150°C.
- (b) 355°C tip temperature (Max.)
- (c) Never contact the ceramic with the iron tip
- (d) 1.0mm tip diameter (Max.)
- (e) Use a 20 watt soldering iron with tip diameter of 1.0mm
- (f) Limit soldering time to 4~5 sec.

Reflow times: 3 times Max
Figure 1: IR Soldering Reflow

Iron Soldering times: 1 times max.

Soldering iron method: 350±5°C Max

Figure 2: Iron soldering temperature profiles

Table (1.1) Reflow Profiles

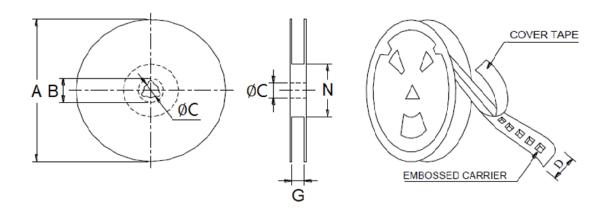
Profile Type:	Pb-Free Assembly
Preheat	
-Temperature Min (T _{smin})	150°C
-Temperature Max (T _{smax})	200°C
-Time (t_s) from $(T_{smin}$ to $T_{smax})$	60-120seconds
Ramp-up rate (T _L to T _p)	3°C /second max.
Liquids temperature (T _L)	217°C
Time (t _L) maintained above T _L	60-150 seconds
Classification temperature (Tc)	See Table (1.2)
Time (t _p) at Tc- 5°C (Tp should be equal to or less than Tc.)	*< 30 seconds
Ramp-down rate $(T_p \text{ to } T_L)$	6°C /second max.
Time 25°C to peak temperature	8 minutes max.

Tp: maximum peak package body temperature, **Tc**: the classification temperature.

For user (customer) **Tp** should be equal to or less than **Tc**.

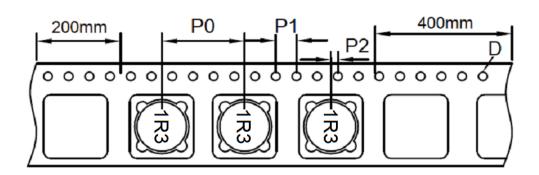
Table (1.2) Package Thickness/Volume and Classification Temperature (T_c)

	Package	Volume mm ³	Volume mm ³	Volume
	Thickness	<350	350-2000	mm³ >2000
PB-Free	<1.6mm	260°C	260°C	260°C
	1.6-2.5mm	260°C	250°C	245°C
Assembly	≥2.5mm	250°C	245°C	245°C


Reflow is referred to standard IPC/JEDEC J-STD-020E.

Superworld Electronics

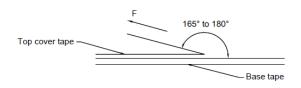
^{*}Tolerance for peak profile temperature (Tp) is defined as a supplier minimum and a user maximum.


8. Packaging Information

8-1. Reel Dimension (Unit: mm)

Туре	А	В	С	D	G	N
13"x24mm	330.0	21.0	13.0	24.0	24.5	100.0

8-2. Tape Dimension (Unit: mm)


P0	P1	P2	D
16.00 Ref	4.00 Ref	2.00±0.10	1.50+0.25/-0.00

8-3. Packaging Quantity (Unit: Pcs)

INNER : REEL	OUTER : CARTON	
QTY(PCS)	QTY(PCS)	SIZE(cm)
600	2,400	36x35.5x14.3

8-4. Tearing Off Force

The force for tearing off cover tape is according to the follow table, in the arrow direction under the following conditions.

(Referenced ANSI/EIA-481-D-2008 of 4.11 standard)

Room Temp. (°C)	Room Humidity (%)	Room atm (hPa)	Tearing Speed (mm/min)
5~35	45~85	860~1060	300±10

Tape Size	8 mm	12 to 56 mm	72 mm or Wider
Tearing Off Force (grams)	10~100	10~130	10~150

Application Notice

1. Storage Conditions

To maintain the solderability of terminal electrodes:

- (a) Recommended products should be used within 12 months from the time of delivery.
- (b) The packaging material should be kept where no chlorine or sulfur exists in the air.

2. Transportation

- (a) Products should be handled with care to avoid damage or contamination from perspiration and skin oils.
- (b) Vacuum pick up is strongly recommended for individual components.
- (c) Bulk handling should ensure that abrasion and mechanical shock are minimized.

