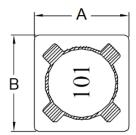
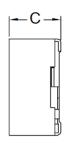
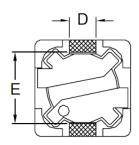
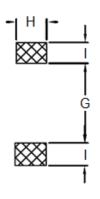
1. Part No. Expression

SDC 0704100 M F

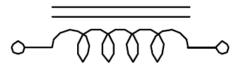

- (a)
- (b)
- (c) (d) (e)
- (a) Series Code


- (d) Tolerance Code
- (b) Dimension Code

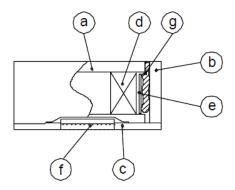

(e) Packaging Code


(c) Inductance Code

2. Configuration & Dimensions (Unit: mm)


Recommended PCB Layout

Note: 1. The above PCB layout reference only.


2. Marking: Inductance Code

Α	В	С	D	Е	G	Н	I
7.3±0.2	7.3±0.2	4.5 Max	1.8 Ref	5.0 Ref	4.8 Ref	2.2 Ref	1.6 Ref

3. Schematic

4. Material List

- (a) Core
- (b) Core
- (c) Base
- (d) Wire
- (e) Tape
- (f) Terminal
- (g) Adhesive

5. General Specifications

- (a) Operating Temp.: -30°C to +105°C (including self-temperature rise)
- (b) All test data referenced to 25°C ambient.
- (c) Heat Rated Current (Irms) will cause the coil temperature rise ΔT of 40°C Max.
- (d) Saturation Current (Isat) will cause inductance L0 to drop 25% Max.
- (e) Rated Current: The lower value of Isat and Irms.
- (f) Resistance to solder heat: 260° C, 10 secs
- (g) Storage Condition (Component in its packaging)
 - i) Temperature: -10°C to 40°C
 - ii) Humidity: Less than 60% RH

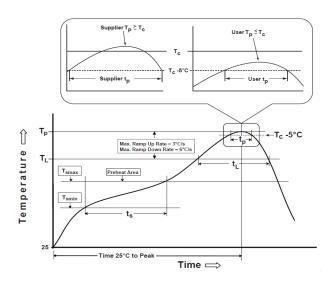
6. Electrical Characteristics

Part Number	Inductance (uH) @0A ±20%	Test Frequency	DCR (Ω) Max	IDC (A) Max
SDC0704100MF	10	0.25V/1KHz	0.049	1.84
SDC0704120MF	12	0.25V/1KHz	0.058	1.71
SDC0704150MF	15	0.25V/1KHz	0.081	1.47
SDC0704180MF	18	0.25V/1KHz	0.091	1.31
SDC0704220MF	22	0.25V/1KHz	0.110	1.23
SDC0704270MF	27	0.25V/1KHz	0.150	1.12
SDC0704330MF	33	0.25V/1KHz	0.170	0.96
SDC0704390MF	39	0.25V/1KHz	0.230	0.91
SDC0704470MF	47	0.25V/1KHz	0.260	0.88
SDC0704560MF	56	0.25V/1KHz	0.350	0.75
SDC0704680MF	68	0.25V/1KHz	0.380	0.69
SDC0704820MF	82	0.25V/1KHz	0.430	0.61
SDC0704101MF	100	0.25V/1KHz	0.610	0.60
SDC0704121MF	120	0.25V/1KHz	0.660	0.52
SDC0704151MF	150	0.25V/1KHz	0.880	0.46
SDC0704181MF	180	0.25V/1KHz	0.980	0.42
SDC0704221MF	220	0.25V/1KHz	1.170	0.36
SDC0704271MF	270	0.25V/1KHz	1.640	0.34
SDC0704331MF	330	0.25V/1KHz	1.860	0.32
SDC0704391MF	390	0.25V/1KHz	2.850	0.29
SDC0704471MF	470	0.25V/1KHz	3.010	0.26
SDC0704561MF	560	0.25V/1KHz	3.620	0.23
SDC0704681MF	680	0.25V/1KHz	4.630	0.22
SDC0704821MF	820	0.25V/1KHz	5.200	0.20
SDC0704102MF	1000	0.25V/1KHz	6.000	0.18

7. Soldering Specification

Mildly activated rosin fluxes are preferred. Our terminations are suitable for re-flow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

7-1. IR Soldering Reflow


Recommended temperature profiles for lead free re-flow soldering in Figure 1, Table 1.1 & 1.2 (J-STD-020E).

7-2. Iron Reflow

Products attachment with a soldering iron is discouraged due to the inherent process control limitations. In the event that a soldering iron must be employed the following precautions are recommended (Figure 2).

Note:

- (a) Preheat circuit and products to 150°C.
- (b) 355°C tip temperature (Max.)
- (c) Never contact the ceramic with the iron tip
- (d) 1.0mm tip diameter (Max.)
- (e) Use a 20 watt soldering iron with tip diameter of 1.0mm
- (f) Limit soldering time to 4~5 sec.

Reflow times: 3 times Max
Figure 1: IR Soldering Reflow

PRE-HEATING SOLDERING NATURAL COOLING Within 4~5s

350

Over 60s

Gradual cooling

TIME(sec.)

Iron Soldering times: 1 times max.

Soldering iron method: 350±5°C Max

Figure 2: Iron soldering temperature profiles

Table (1.1) Reflow Profiles

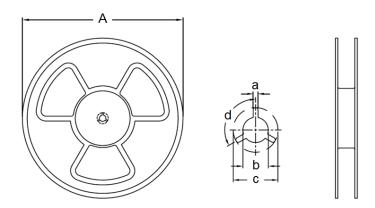
Profile Type:	Pb-Free Assembly
Preheat	
-Temperature Min (T _{smin})	150°C
-Temperature Max (T _{smax})	200°C
-Time (t_s) from $(T_{smin}$ to $T_{smax})$	60-120seconds
Ramp-up rate (T _L to T _p)	3°C /second max.
Liquids temperature (T _L)	217°C
Time (t _L) maintained above T _L	60-150 seconds
Classification temperature (Tc)	See Table (1.2)
Time (t _p) at Tc- 5°C (Tp should be equal to or less than Tc.)	*< 30 seconds
Ramp-down rate $(T_p \text{ to } T_L)$	6°C /second max.
Time 25°C to peak temperature	8 minutes max.

Tp: maximum peak package body temperature, **Tc**: the classification temperature.

For user (customer) **Tp** should be equal to or less than **Tc**.

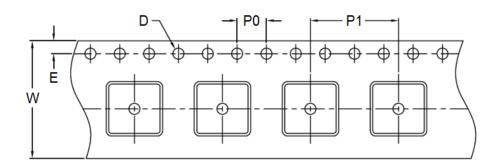
Table (1.2) Package Thickness/Volume and Classification Temperature (T_c)

	Package	Volume mm ³	Volume mm ³	Volume
	Thickness	<350	350-2000	mm³ >2000
PB-Free	<1.6mm	260°C	260°C	260°C
	1.6-2.5mm	260°C	250°C	245°C
Assembly	≥2.5mm	250°C	245°C	245°C

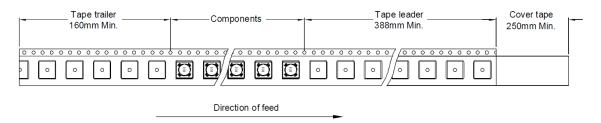

Reflow is referred to standard IPC/JEDEC J-STD-020E.

Superworld Electronics

^{*}Tolerance for peak profile temperature (Tp) is defined as a supplier minimum and a user maximum.


8. Packaging Information

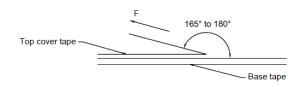
8-1. Reel Dimension (Unit: mm)



Туре	Α	а	b	С	d
13"x16mm	330.0	2.5 Ref	13.0 Ref	23.0 Ref	120°

8-2. Tape Dimension (Unit: mm)

W	Е	D	P0	P1
16.00 Ref	1.75±0.10	1.50+0.10/-0.00	4.00±0.10	12.00 Ref



8-3. Packaging Quantity (Unit: Pcs)

INNER	: REEL	OUTER : CARTON		
QTY(PCS)	G.W(gw)	QTY(PCS)	G.W(Kg)	SIZE(cm)
1,000	1.2	16,000	24	36x36x40

8-4. Tearing Off Force

The force for tearing off cover tape is according to the follow table, in the arrow direction under the following conditions.

(Referenced ANSI/EIA-481-D-2008 of 4.11 standard)

Room Temp. (°C)	Room Humidity (%)	Room atm (hPa)	Tearing Speed (mm/min)
5~35	45~85	860~1060	300±10

Tape Size	8 mm	12 to 56 mm	72 mm or Wider
Tearing Off Force (grams)	10~100	10~130	10~150

Application Notice

1. Storage Conditions

To maintain the solderability of terminal electrodes:

- (a) Recommended products should be used within 12 months from the time of delivery.
- (b) The packaging material should be kept where no chlorine or sulfur exists in the air.

2. Transportation

- (a) Products should be handled with care to avoid damage or contamination from perspiration and skin oils.
- (b) Vacuum pick up is strongly recommended for individual components.
- (c) Bulk handling should ensure that abrasion and mechanical shock are minimized.

