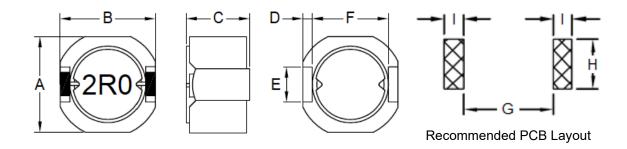
1. Part No. Expression


SDC 06032R0 M Z F

- (a)
- (b)
- (c) (d) (e) (f)
- (a) Series Code

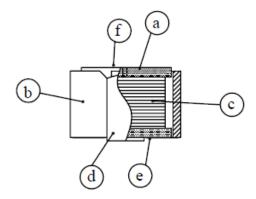
- (d) Tolerance Code
- (b) Dimension Code

- (e) Special Code
- (c) Inductance Code
- (f) Packaging Code

2. Configuration & Dimensions (Unit: mm)

Note: 1. The above PCB layout reference only.

2. Marking: Inductance Code


Α	В	С	D	E
6.2 Max	6.3±0.3	3.5±0.1	0.6 Тур	2.0 Typ
F	G	Н	I	-
4.8 Typ	4.6 Ref	2.6 Ref	1.0 Ref	-

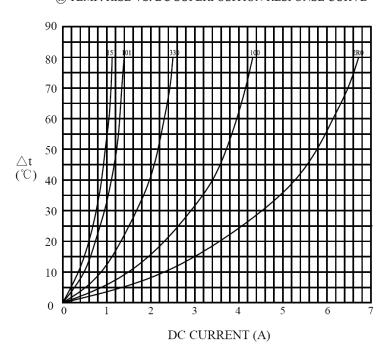
3. Schematic

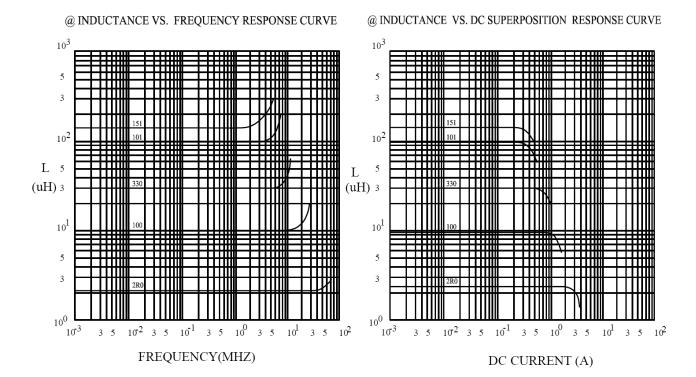
4. Material List

- (a) Core
- (b) Core
- (c) Wire
- (d) Terminal
- (e) Adhesive
- Ink

5. General Specifications

- (a) Operating Temp.: -40°C to +125°C (including self-temperature rise)
- (b) Storage Temp.: -40°C to +125°C (on board)
- (c) All test data referenced to 25°C ambient.
- (d) Heat Rated Current (Irms) will cause the coil temperature rise ΔT of 40°C Max.
- (e) Saturation Current (Isat) will cause inductance L0 to drop 30% Max.
- (f) Rated Current: The lower value of Isat and Irms.
- (g) Resistance to solder heat: 260° C, 10 secs
- (h) Storage Condition (Component in its packaging)
 - Temperature: -10°C to 40°C
 - ii) Humidity: Less than 60% RH


6. Electrical Characteristics

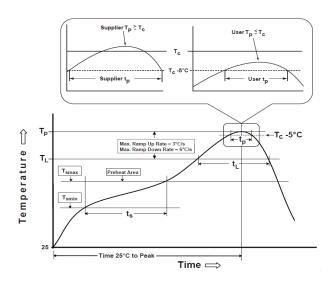

Part Number	Inductance (uH) @0A ±20%	Test Frequency	DCR (mΩ) Typ	Isat (A) Max	Irms (A) Max
SDC06032R0MZF	2.0	1.0V/100KHz	19.1	2.997	3.30
SDC06032R7MZF	2.7	1.0V/100KHz	22.0	2.691	3.12
SDC06033R3MZF	3.3	1.0V/100KHz	25.7	2.573	2.81
SDC06034R7MZF	4.7	1.0V/100KHz	31.6	2.084	2.51
SDC06036R2MZF	6.2	1.0V/100KHz	35.0	1.835	2.41
SDC06038R2MZF	8.2	1.0V/100KHz	43.5	1.542	2.11
SDC0603100MZF	10.0	1.0V/100KHz	49.4	1.491	1.97
SDC0603120MZF	12.0	1.0V/100KHz	62.0	1.282	1.73
SDC0603150MZF	15.0	1.0V/100KHz	77.0	1.103	1.54
SDC0603180MZF	18.0	1.0V/100KHz	81.5	1.046	1.52
SDC0603220MZF	22.0	1.0V/100KHz	106	0.968	1.29
SDC0603270MZF	27.0	1.0V/100KHz	140	0.821	1.11
SDC0603330MZF	33.0	1.0V/100KHz	162	0.755	1.02
SDC0603390MZF	39.0	1.0V/100KHz	192	0.700	0.96
SDC0603470MZF	47.0	1.0V/100KHz	209	0.677	0.89
SDC0603560MZF	56.0	1.0V/100KHz	257	0.602	0.80
SDC0603680MZF	68.0	1.0V/100KHz	320	0.556	0.71
SDC0603820MZF	82.0	1.0V/100KHz	420	0.468	0.61
SDC0603101MZF	100	1.0V/100KHz	477	0.449	0.57
SDC0603151MZF	150	1.0V/100KHz	664	0.367	0.48

7. Characteristics Curves

8. Soldering Specification

Mildly activated rosin fluxes are preferred. Our terminations are suitable for re-flow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

8-1. IR Soldering Reflow


Recommended temperature profiles for lead free re-flow soldering in Figure 1, Table 1.1 & 1.2 (J-STD-020E).

8-2. Iron Reflow

Products attachment with a soldering iron is discouraged due to the inherent process control limitations. In the event that a soldering iron must be employed the following precautions are recommended (Figure 2).

Note:

- (a) Preheat circuit and products to 150°C.
- (b) 355°C tip temperature (Max.)
- (c) Never contact the ceramic with the iron tip
- (d) 1.0mm tip diameter (Max.)
- (e) Use a 20 watt soldering iron with tip diameter of 1.0mm
- (f) Limit soldering time to 4~5 sec.

Reflow times: 3 times Max
Figure 1: IR Soldering Reflow

PRE-HEATING SOLDERING NATURAL COOLING Within 4~5s

350

Over 60s

Gradual cooling

TIME(sec.)

Iron Soldering times: 1 times max.

Soldering iron method: 350±5°C Max

Figure 2: Iron soldering temperature profiles

Table (1.1) Reflow Profiles

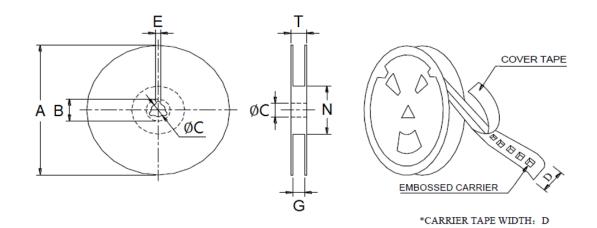
Profile Type:	Pb-Free Assembly
Preheat	
-Temperature Min (T _{smin})	150°C
-Temperature Max (T _{smax})	200°C
-Time (t_s) from $(T_{smin}$ to $T_{smax})$	60-120seconds
Ramp-up rate (T _L to T _p)	3°C /second max.
Liquids temperature (T _L)	217°C
Time (t _L) maintained above T _L	60-150 seconds
Classification temperature (T _c)	See Table (1.2)
Time (t _p) at Tc- 5°C (Tp should be equal to or less than Tc.)	*< 30 seconds
Ramp-down rate (T _p to T _L)	6°C /second max.
Time 25°C to peak temperature	8 minutes max.

Tp: maximum peak package body temperature, **Tc**: the classification temperature.

For user (customer) **Tp** should be equal to or less than **Tc**.

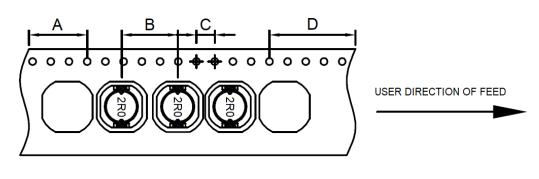
Table (1.2) Package Thickness/Volume and Classification Temperature (T_c)

	Package	Volume mm ³	Volume mm ³	Volume
	Thickness	<350	350-2000	mm³ >2000
PB-Free	<1.6mm	260°C	260°C	260°C
	1.6-2.5mm	260°C	250°C	245°C
Assembly	≥2.5mm	250°C	245°C	245°C


Reflow is referred to standard IPC/JEDEC J-STD-020E.

Superworld Electronics

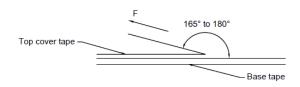
^{*}Tolerance for peak profile temperature (Tp) is defined as a supplier minimum and a user maximum.


9. Packaging Information

9-1. Reel Dimension (Unit: mm)

Туре	Α	В	O	D	Е	G	N	Т
13"x16mm	330.0	21.0 Ref	13.0 Ref	16.0	2.0 Ref	18.0 Max	50.0 Min	22.4

9-2. Tape Dimension (Unit: mm)


Α	В	С	D
200	12	4	400

9-3. Packaging Quantity (Unit: Pcs)

INNER : REEL		OUTER : CARTON		
QTY(PCS)	G.W(gw)	QTY(PCS)	G.W(Kg)	SIZE(cm)
1,000	800	6,000	8.3	38x36.5x21

9-4. Tearing Off Force

The force for tearing off cover tape is according to the follow table, in the arrow direction under the following conditions.

(Referenced ANSI/EIA-481-D-2008 of 4.11 standard)

Room Temp. (°C)	Room Humidity (%)	Room atm (hPa)	Tearing Speed (mm/min)
5~35	45~85	860~1060	300±10

Tape Size	8 mm	12 to 56 mm	72 mm or Wider
Tearing Off Force (grams)	10~100	10~130	10~150

Application Notice

1. Storage Conditions

To maintain the solderability of terminal electrodes:

- (a) Recommended products should be used within 12 months from the time of delivery.
- (b) The packaging material should be kept where no chlorine or sulfur exists in the air.

2. Transportation

- (a) Products should be handled with care to avoid damage or contamination from perspiration and skin oils.
- (b) Vacuum pick up is strongly recommended for individual components.
- (c) Bulk handling should ensure that abrasion and mechanical shock are minimized.

