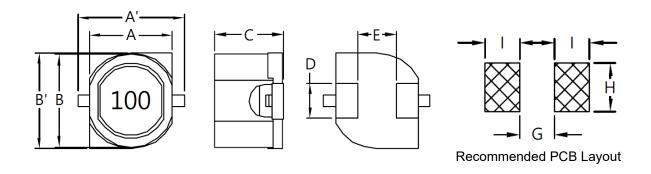
1. Part No. Expression

SDB 1105 100 M Z F

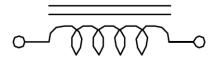

- (a)
- (b)
- (c) (d) (e) (f)
- (a) Series Code

- (d) Tolerance Code
- (b) Dimension Code

(e) Special Code

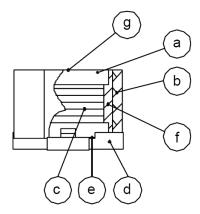
- (c) Inductance Code
- (f) Packaging Code

2. Configuration & Dimensions (Unit: mm)



Note: 1. The above PCB layout reference only.

2. Marking: Inductance Code


A'	А	B'	В	С
15.0 Max	11.6 Ref	12.7±0.3	12.6 Ref	5.7±0.3
D	Е	G	Н	I
3.0±0.2	8.2±0.3	7.3 Ref	3.9 Ref	2.8 Ref

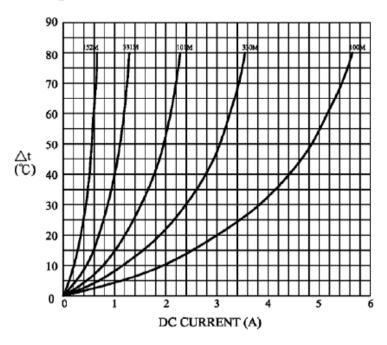
3. Schematic

4. Material List

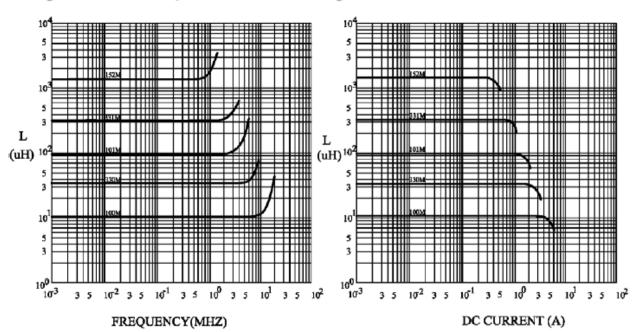
- (a) DR Core
- (b) RI Core
- (c) Wire
- (d) Base
- (e) Terminal
- (f) Adhesive
- (g) Ink

5. General Specifications

- (a) Operating Temp.: -40°C to +75°C (including self-temperature rise)
- (b) All test data referenced to 25°C ambient.
- (c) Heat Rated Current (Irms) will cause the coil temperature rise ΔT of 50°C Max.
- (d) Saturation Current (Isat) will cause inductance L0 to drop approximately 10%.
- (e) Rated Current: The lower value of Isat and Irms.
- (f) Resistance to solder heat: 260°C 10 secs
- (g) Storage Condition (Component in its packaging)
 - i) Temperature: -10°C to 40°C
 - ii) Humidity: Less than 60% RH


6. Electrical Characteristics

Part Number	Inductance (µH) @0A ±20%	Test Frequency	RDC (Ω) Max	IDC (A)
SDB1105100MZF	10	1V/1KHz	0.05	2.50
SDB1105120MZF	12	1V/1KHz	0.05	2.40
SDB1105150MZF	15	1V/1KHz	0.06	2.30
SDB1105180MZF	18	1V/1KHz	0.07	2.20
SDB1105220MZF	22	1V/1KHz	0.08	2.10
SDB1105270MZF	27	1V/1KHz	0.10	2.00
SDB1105330MZF	33	1V/1KHz	0.10	1.90
SDB1105390MZF	39	1V/1KHz	0.12	1.80
SDB1105470MZF	47	1V/1KHz	0.14	1.60
SDB1105560MZF	56	1V/1KHz	0.15	1.40
SDB1105680MZF	68	1V/1KHz	0.18	1.30
SDB1105820MZF	82	1V/1KHz	0.20	1.20
SDB1105101MZF	100	1V/1KHz	0.25	1.10
SDB1105121MZF	120	1V/1KHz	0.30	0.97
SDB1105151MZF	150	1V/1KHz	0.35	0.86
SDB1105181MZF	180	1V/1KHz	0.40	0.84
SDB1105221MZF	220	1V/1KHz	0.50	0.72
SDB1105271MZF	270	1V/1KHz	0.60	0.65
SDB1105331MZF	330	1V/1KHz	0.70	0.61
SDB1105391MZF	390	1V/1KHz	0.80	0.58
SDB1105471MZF	470	1V/1KHz	0.90	0.50
SDB1105561MZF	560	1V/1KHz	1.10	0.48
SDB1105681MZF	680	1V/1KHz	1.20	0.43
SDB1105821MZF	820	1V/1KHz	1.50	0.38
SDB1105102MZF	1000	1V/1KHz	2.00	0.35
SDB1105122MZF	1200	1V/1KHz	2.20	0.32
SDB1105152MZF	1500	1V/1KHz	2.50	0.30



7. Characteristics Curve

@ INDUCTANCE VS. FREQUENCY RESPONSE CURVE @ INDUCTANCE VS. DC SUPERPOSITION RESPONSE CURVE

8. Soldering Specification

Mildly activated rosin fluxes are preferred. Our terminations are suitable for re-flow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

8-1. IR Soldering Reflow

Recommended temperature profiles for lead free re-flow soldering in Figure 1, Table 1.1 & 1.2 (J-STD-020E).

8-2. Iron Reflow

Products attachment with a soldering iron is discouraged due to the inherent process control limitations. In the event that a soldering iron must be employed the following precautions are recommended (Figure 2).

Note:

- (a) Preheat circuit and products to 150°C.
- (b) 355°C tip temperature (Max.)
- (c) Never contact the ceramic with the iron tip
- (d) 1.0mm tip diameter (Max.)
- (e) Use a 20 watt soldering iron with tip diameter of 1.0mm
- (f) Limit soldering time to 4~5 sec.

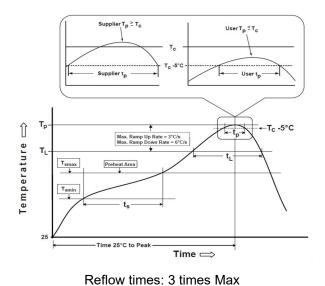
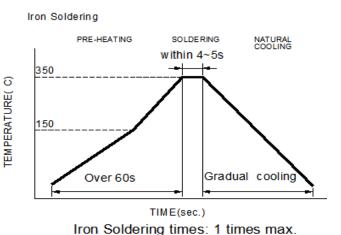



Figure 1: IR Soldering Reflow

Soldering iron method: 350±5°C Max

Figure 2: Iron soldering temperature profiles

Table (1.1) Reflow Profiles

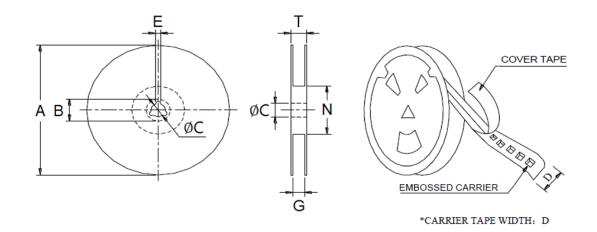
Profile Type:	Pb-Free Assembly
Preheat	
-Temperature Min (T _{smin})	150°C
-Temperature Max (T _{smax})	200°C
-Time (t_s) from $(T_{smin}$ to $T_{smax})$	60-120seconds
Ramp-up rate (T _L to T _p)	3°C /second max.
Liquids temperature (T _L)	217°C
Time (t _L) maintained above T _L	60-150 seconds
Classification temperature (Tc)	See Table (1.2)
Time (t _p) at Tc- 5°C (Tp should be equal to or less than Tc.)	*< 30 seconds
Ramp-down rate $(T_p \text{ to } T_L)$	6°C /second max.
Time 25°C to peak temperature	8 minutes max.

Tp: maximum peak package body temperature, **Tc**: the classification temperature.

For user (customer) **Tp** should be equal to or less than **Tc**.

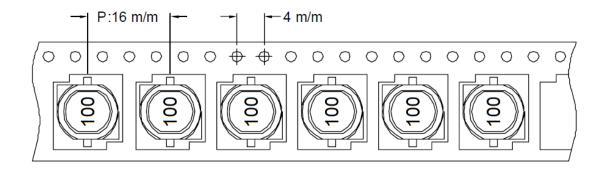
Table (1.2) Package Thickness/Volume and Classification Temperature (T_c)

	Package	Volume mm ³	Volume mm ³	Volume
	Thickness	<350	350-2000	mm³ >2000
PB-Free	<1.6mm	260°C	260°C	260°C
	1.6-2.5mm	260°C	250°C	245°C
Assembly	≥2.5mm	250°C	245°C	245°C


Reflow is referred to standard IPC/JEDEC J-STD-020E.

Superworld Electronics

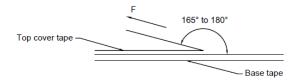
^{*}Tolerance for peak profile temperature (Tp) is defined as a supplier minimum and a user maximum.


9. Packaging Information

9-1. Reel Dimension (Unit: mm)

Туре	Α	В	С	D	E	G	N	Т
13"x24mm	330.0	21.0 Ref	13.0 Ref	24.0 Ref	2.0 Ref	26.0 Max	50.0 Min	30.4

9-2. Tape Dimension (Unit: mm)



9-3. Packaging Quantity & G.W & Size

INNER : REEL			OUTER : CARTON		
QTY(PCS)	G.W(gw)	STYLE	QTY(PCS)	G.W(Kg)	SIZE(cm)
500	1500	13-24	2000	9.5	40x40x24

9-4. Tearing Off Force

The force for tearing off cover tape is according to the follow table, in the arrow direction under the following conditions.

(Referenced ANSI/EIA-481-D-2008 of 4.11 standard)

Room Temp. (°C)	Room Humidity (%)	Room atm (hPa)	Tearing Speed (mm/min)
5~35	45~85	860~1060	300±10

Tape Size	8 mm	12 to 56 mm	72 mm or Wider
Tearing Off Force (grams)	10~100	10~130	10~150

Application Notice

1. Storage Conditions

To maintain the solderability of terminal electrodes:

- (a) Recommended products should be used within 12 months from the time of delivery.
- (b) The packaging material should be kept where no chlorine or sulfur exists in the air.

2. Transportation

- (a) Products should be handled with care to avoid damage or contamination from perspiration and skin oils.
- (b) Vacuum pick up is strongly recommended for individual components.
- (c) Bulk handling should ensure that abrasion and mechanical shock are minimized.

