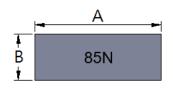
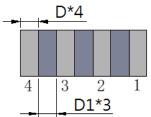
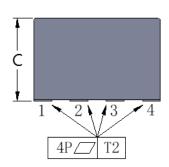
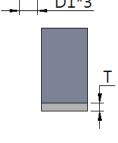
1. Part No. Expression

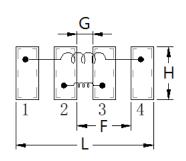
PBP 114275 P485N M


- (a)
- (b)
- (c)
- (d) (e)
- (a) Series Code

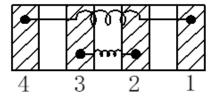

- (d) Inductance Code
- (b) Dimension Code


(e) Tolerance Code

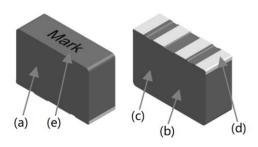

(c) Material Code


2. Configuration & Dimensions (Unit: mm)

Recommended PCB Layout


Note: 1. The above PCB layout reference only.

- 2. Recommend solder paste thickness at 0.15 mm and above.
- 3. Marking: Inductance Code, Black
- 4. Electrode position does not represent polarity.


А	В	С	D	D1	Т
11.00±0.20	4.00±0.20	7.30±0.20	1.55±0.30	1.60±0.30	0.70±0.30
4P	L	G	Н	F	-
≤ 0.10	11.30 Ref	1.30 Ref	4.30 Ref	4.45 Ref	-

3. Schematic

4. Material List

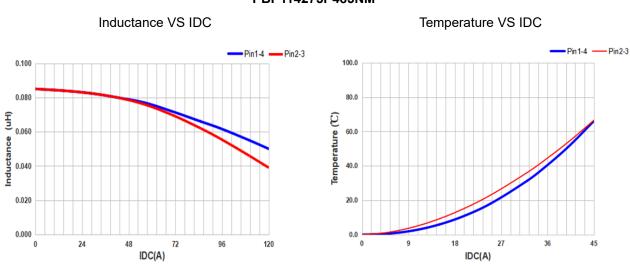
NO	Item		
(a)	Core		
(b)	Clip		
(c)	Paint		
(d)	Terminal		
(e)	Ink		

5. General Specifications

- (a) Operating Temp.: -40°C to 125°C (including self-temperature rise)
- (b) Storage Temp.: -40°C to 125°C (on board)
- (c) All test data referenced to 25°C ambient.
- (d) Heat Rated Current (Irms) will cause the coil temperature rise approximately ΔT of 40°C.
- (e) Saturation Current (Isat) will cause inductance L0 to drop approximately 30%.
- (f) Rated DC Current: The lower value of Irms and Isat.
- (g) Part Temperature (Ambient + Temp. Rise): Should not exceed 125°C under worst case operating conditions.
- (h) Storage Condition (Component in its packaging)

i) Temperature: Less than 40°C

ii) Humidity: Less than 85% RH


6. Electrical Characteristics

Part Number	Electrode pin position (µ	Inductance (µH) @0A ±20%	Irms (A)		Isat (A)		DCR (mΩ)		Impulse Voltage
			Тур	Max	Тур	Max	Тур	Max	(V)
PBP114275P485NM	P1-4	0.085	35.0	30.0	95.0	85.0	0.11	0.14	100
	P2-3	0.085	32.0	27.0	85.0	75.0	0.53	0.58	100

Test frequency: 1.0V/100KHz

7. Characteristics Curve

PBP114275P485NM

8. Soldering Specification

Mildly activated rosin fluxes are preferred. Our terminations are suitable for re-flow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

8-1. IR Soldering Reflow

Recommended temperature profiles for lead free re-flow soldering in Figure 1, Table 1.1 & 1.2 (J-STD-020E).

8-2. Iron Reflow

Products attachment with a soldering iron is discouraged due to the inherent process control limitations. In the event that a soldering iron must be employed the following precautions are recommended (Figure 2).

Note:

- (a) Preheat circuit and products to 150°C.
- (b) 355°C tip temperature (Max.)
- (c) Never contact the ceramic with the iron tip
- (d) 1.0mm tip diameter (Max.)
- (e) Use a 20 watt soldering iron with tip diameter of 1.0mm
- (f) Limit soldering time to 4~5 sec.

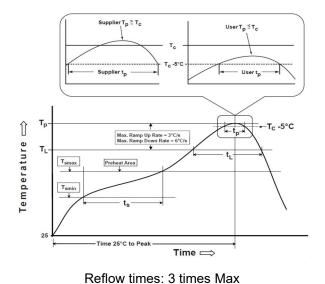
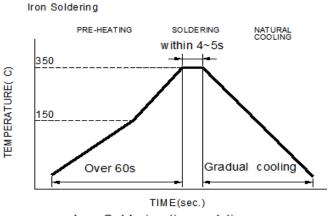



Figure 1: IR Soldering Reflow

Iron Soldering times: 1 times max.

Soldering iron method: 350±5°C Max

Figure 2: Iron soldering temperature profiles

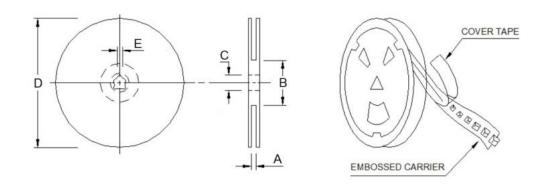
Table (1.1) Reflow Profiles

Profile Type:	Pb-Free Assembly
Preheat	
-Temperature Min (T _{smin})	150°C
-Temperature Max (T _{smax})	200°C
-Time (t _s) from (T _{smin} to T _{smax})	60-120seconds
Ramp-up rate (T _L to T _p)	3°C /second max.
Liquids temperature (T _L)	217°C
Time (t _L) maintained above T _L	60-150 seconds
Classification temperature (T _c)	See Table (1.2)
Time (t _p) at Tc- 5°C (Tp should be equal to or less than Tc.)	*< 30 seconds
Ramp-down rate (T _p to T _L)	6°C /second max.
Time 25°C to peak temperature	8 minutes max.

Tp: maximum peak package body temperature, **Tc**: the classification temperature.

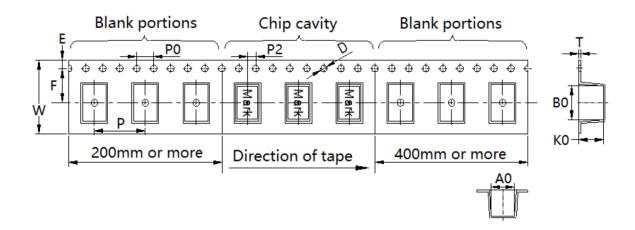
For user (customer) **Tp** should be equal to or less than **Tc**.

Table (1.2) Package Thickness/Volume and Classification Temperature (Tc)


	Package	Volume mm ³	Volume mm ³	Volume
	Thickness	<350	350-2000	mm³ >2000
PB-Free	<1.6mm	260°C	260°C	260°C
	1.6-2.5mm	260°C	250°C	245°C
Assembly	≥2.5mm	250°C	245°C	245°C

Reflow is referred to standard IPC/JEDEC J-STD-020E.

^{*}Tolerance for peak profile temperature (Tp) is defined as a supplier minimum and a user maximum.


9. Packaging Information

9-1. Reel Dimension (Unit: mm)

Туре	Α	В	С	D	Е
13"x24mm	24.4+2.0/-0.0	100.0±2.0	13.0+0.5/-0.2	330.0	2.0±0.5

9-2. Tape Dimension (Unit: mm)

В0	A0	K0	Р	P0	P2
11.80 Ref	4.50 Ref	7.80 Ref	12.00±0.10	4.00±0.10	2.00±0.10
W	F	E	Т	D	-
24.00±0.10	11.50±0.10	1.75±0.10	0.35±0.05	1.50±0.10	-

9-3. Packaging Quantity (Unit: Pcs)

Chip/ Reel	600
------------	-----

9-4. Tearing Off Force

The force for tearing off cover tape is according to the follow table, in the arrow direction under the following conditions.

(Referenced ANSI/EIA-481-D-2008 of 4.11 standard)

Room Temp. (°C)	Room Humidity (%)	Room atm (hPa)	Tearing Speed (mm/min)
5~35	45~85	860~1060	300±10

Tape Size	8 mm	12 to 56 mm	72 mm or Wider
Tearing Off Force (grams)	10~100	10~130	10~150

Application Notice

1. Storage Conditions

To maintain the solderability of terminal electrodes:

- (a) Recommended products should be used within 12 months from the time of delivery.
- (b) The packaging material should be kept where no chlorine or sulfur exists in the air.

2. Transportation

- (a) Products should be handled with care to avoid damage or contamination from perspiration and skin oils.
- (b) Vacuum pick up is strongly recommended for individual components.
- (c) Bulk handling should ensure that abrasion and mechanical shock are minimized.

