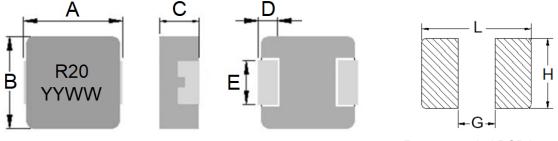
#### P0


### 1. Part No. Expression

### <u>PIC 1205 HP R20 M F</u>

(a) (b) (c) (d) (e) (f)

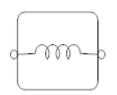
- (a) Series Code
- (b) Dimension Code
- (d) Inductance Code
- (e) Tolerance Code
- (c) Material Code
- (f) Packaging Code

### 2. Configuration & Dimensions (Unit: mm)

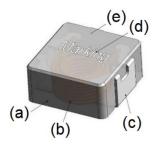


Recommended PCB Layout

Note: 1. The above PCB layout reference only.


2. Recommend solder paste thickness at 0.15 mm and above.

3. Marking: Top= Inductance Code, Bottom=YYWW (Year/World week), Black


| А        | В        | С       | D       | E       | L        | G       | Н       |
|----------|----------|---------|---------|---------|----------|---------|---------|
| 13.5±0.5 | 12.5±0.3 | 4.8±0.2 | 2.3±0.3 | 4.7±0.3 | 14.2 Ref | 8.0 Ref | 5.0 Ref |



## 3. Schematic



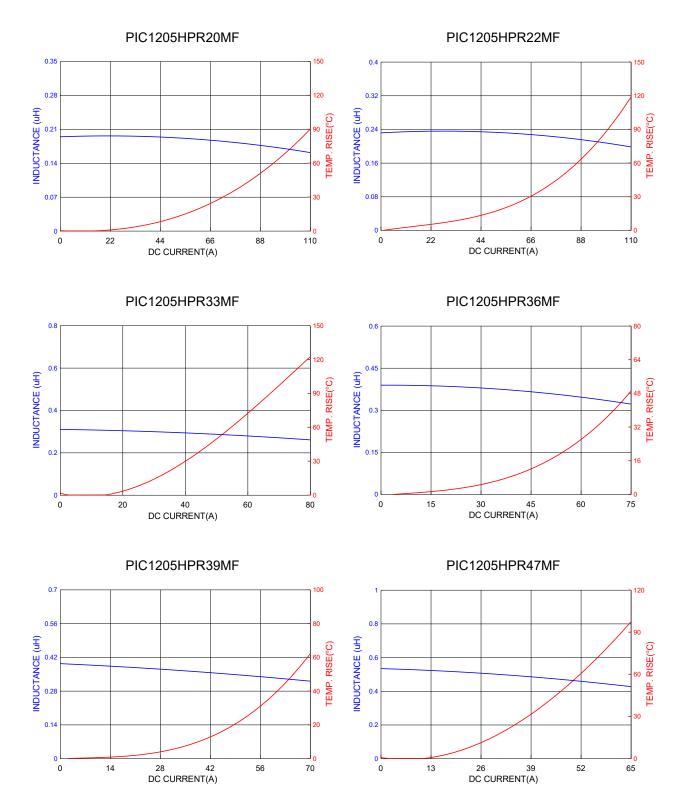
## 4. Material List



| NO  | Items |  |  |
|-----|-------|--|--|
| (a) | Core  |  |  |
| (b) | Wire  |  |  |
| (c) | Clip  |  |  |
| (d) | Ink   |  |  |
| (e) | Paint |  |  |

### 5. General Specifications

- (a) Operating Temp.: 40°C to + 125°C (including self-temperature rise)
- (b) Storage Temp.: 40°C to + 125°C (on board)
- (c) All test data referenced to 25°C ambient.
- (d) Heat Rated Current (Irms) will cause the coil temperature rise approximately  $\Delta T$  of 40°C.
- (e) Saturation Current (Isat) will cause inductance L0 to drop approximately 30%.
- (f) Rated DC Current: The lower value of Irms and Isat.
- (g) Part Temperature (Ambient + Temp. Rise): Should not exceed 125°C under worst case operating conditions.
- (h) Maximum Operating Voltage: 80V
- (i) Storage Condition (Component in its packaging)
  - i) Temperature: Less than 40°C
  - ii) Humidity: Less than 60% RH

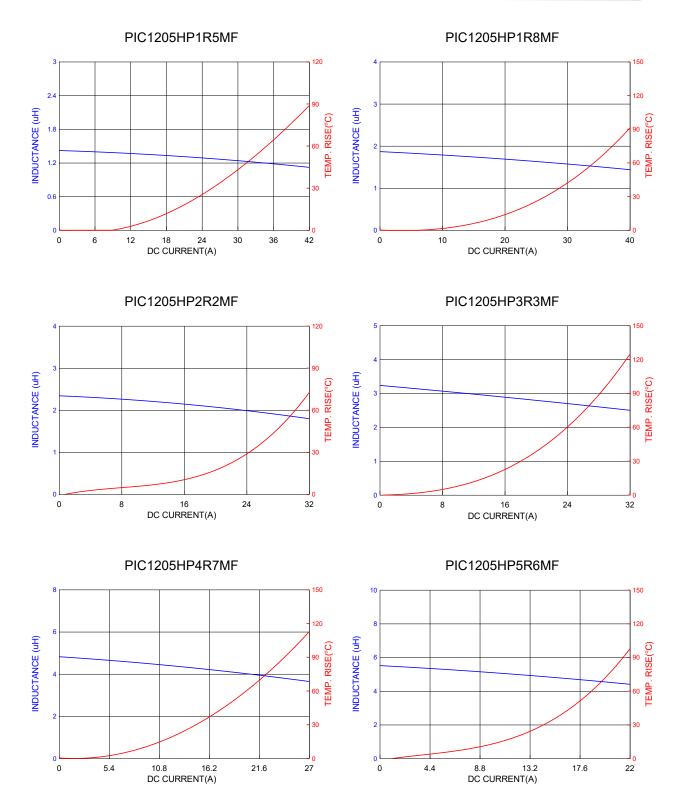



## 6. Electrical Characteristics

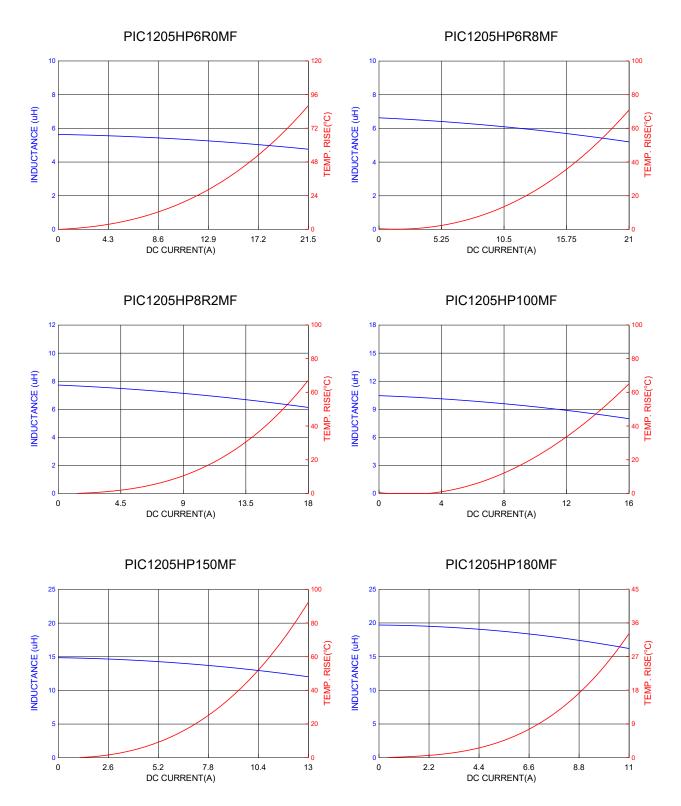

| Part Number    | Inductance<br>(µH) @0A | Test        | Irms<br>(A) | lsat<br>(A) |      | CR<br>Ω) |
|----------------|------------------------|-------------|-------------|-------------|------|----------|
|                | ±20%                   | Frequency   | Тур         | Тур         | Тур  | Max      |
| PIC1205HPR20MF | 0.20                   | 1.0V/100KHz | 52.0        | 110         | 0.45 | 0.55     |
| PIC1205HPR22MF | 0.22                   | 1.0V/100KHz | 52.0        | 110         | 0.5  | 0.7      |
| PIC1205HPR33MF | 0.33                   | 1.0V/100KHz | 42.0        | 80.0        | 0.7  | 0.9      |
| PIC1205HPR36MF | 0.36                   | 1.0V/100KHz | 42.0        | 75.0        | 0.75 | 0.95     |
| PIC1205HPR39MF | 0.39                   | 1.0V/100KHz | 42.0        | 70.0        | 0.78 | 0.95     |
| PIC1205HPR47MF | 0.47                   | 1.0V/100KHz | 38.0        | 65.0        | 0.86 | 1.1      |
| PIC1205HPR50MF | 0.50                   | 1.0V/100KHz | 37.0        | 60.0        | 0.9  | 1.3      |
| PIC1205HPR56MF | 0.56                   | 1.0V/100KHz | 36.0        | 55.0        | 1.0  | 1.5      |
| PIC1205HPR68MF | 0.68                   | 1.0V/100KHz | 34.0        | 54.0        | 1.4  | 1.7      |
| PIC1205HPR82MF | 0.82                   | 1.0V/100KHz | 31.0        | 52.0        | 1.7  | 2.1      |
| PIC1205HP1R0MF | 1.00                   | 1.0V/100KHz | 29.0        | 50.0        | 1.85 | 2.5      |
| PIC1205HP1R2MF | 1.20                   | 1.0V/100KHz | 28.0        | 49.0        | 2.5  | 3.0      |
| PIC1205HP1R5MF | 1.50                   | 1.0V/100KHz | 27.0        | 48.0        | 2.8  | 3.3      |
| PIC1205HP1R8MF | 1.80                   | 1.0V/100KHz | 21.0        | 40.0        | 4.0  | 4.9      |
| PIC1205HP2R2MF | 2.20                   | 1.0V/100KHz | 20.0        | 32.0        | 4.2  | 5.5      |
| PIC1205HP3R3MF | 3.30                   | 1.0V/100KHz | 15.0        | 32.0        | 6.8  | 9.2      |
| PIC1205HP4R7MF | 4.70                   | 1.0V/100KHz | 12.0        | 27.0        | 11.4 | 15.0     |
| PIC1205HP5R6MF | 5.60                   | 1.0V/100KHz | 11.5        | 22.0        | 12.3 | 16.5     |
| PIC1205HP6R0MF | 6.00                   | 1.0V/100KHz | 11.5        | 21.5        | 13.0 | 16.5     |
| PIC1205HP6R8MF | 6.80                   | 1.0V/100KHz | 11.0        | 21.0        | 14.5 | 18.5     |
| PIC1205HP8R2MF | 8.20                   | 1.0V/100KHz | 9.5         | 18.0        | 16.8 | 22.5     |
| PIC1205HP100MF | 10.0                   | 1.0V/100KHz | 9.0         | 16.0        | 21.4 | 25.5     |
| PIC1205HP150MF | 15.0                   | 1.0V/100KHz | 8.2         | 13.0        | 32.0 | 38.0     |
| PIC1205HP180MF | 18.0                   | 1.0V/100KHz | 7.5         | 11.0        | 40.0 | 45.0     |
| PIC1205HP220MF | 22.0                   | 1.0V/100KHz | 6.5         | 10.0        | 50.0 | 58.0     |



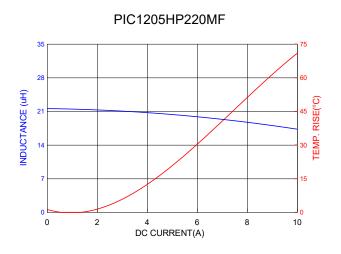
## 7. Characteristics Curve









03/07/2025













## 8. Soldering Specification

Mildly activated rosin fluxes are preferred. Our terminations are suitable for re-flow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

### 8-1. IR Soldering Reflow

Recommended temperature profiles for lead free re-flow soldering in Figure 1, Table 1.1 & 1.2 (J-STD-020E).

### 8-2. Iron Reflow

Products attachment with a soldering iron is discouraged due to the inherent process control limitations. In the event that a soldering iron must be employed the following precautions are recommended (Figure 2).

Note:

- (a) Preheat circuit and products to 150°C.
- (b) 355°C tip temperature (Max.)
- (c) Never contact the ceramic with the iron tip
- (d) 1.0mm tip diameter (Max.)
- (e) Use a 20 watt soldering iron with tip diameter of 1.0mm
- (f) Limit soldering time to 4~5 sec.

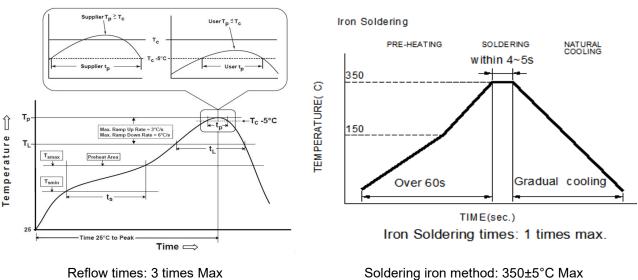



Figure 1: IR Soldering Reflow

Soldering iron method: 350±5°C Max Figure 2: Iron soldering temperature profiles



### Table (1.1) Reflow Profiles

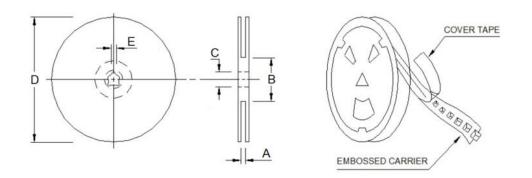
| Profile Type:                                                          | Pb-Free Assembly |
|------------------------------------------------------------------------|------------------|
| Preheat                                                                |                  |
| -Temperature Min (T <sub>smin</sub> )                                  | 150°C            |
| -Temperature Max (T <sub>smax</sub> )                                  | 200°C            |
| -Time (t <sub>s</sub> ) from (T <sub>smin</sub> to T <sub>smax</sub> ) | 60-120seconds    |
| Ramp-up rate (T <sub>L</sub> to T <sub>P</sub> )                       | 3°C /second max. |
| Liquids temperature (T∟)                                               | 217°C            |
| Time (t∟) maintained above T∟                                          | 60-150 seconds   |
| Classification temperature (T <sub>c</sub> )                           | See Table (1.2)  |
| Time $(t_p)$ at Tc- 5°C (Tp should be equal to or less than Tc.)       | *< 30 seconds    |
| Ramp-down rate ( $T_p$ to $T_L$ )                                      | 6°C /second max. |
| Time 25°C to peak temperature                                          | 8 minutes max.   |

**Tp**: maximum peak package body temperature, **Tc**: the classification temperature.

For user (customer) **Tp** should be equal to or less than **Tc**.

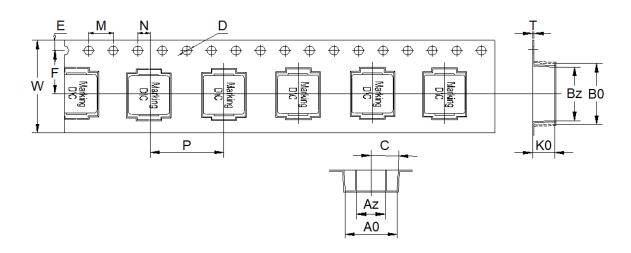
\*Tolerance for peak profile temperature (Tp) is defined as a supplier minimum and a user maximum.

| ( )      | 0         |                        |                        | ( 3)                  |
|----------|-----------|------------------------|------------------------|-----------------------|
|          | Package   | Volume mm <sup>3</sup> | Volume mm <sup>3</sup> | Volume                |
|          | Thickness | <350                   | 350-2000               | mm <sup>3</sup> >2000 |
| PB-Free  | <1.6mm    | 260°C                  | 260°C                  | 260°C                 |
|          | 1.6-2.5mm | 260°C                  | 250°C                  | 245°C                 |
| Assembly | ≥2.5mm    | 250°C                  | 245°C                  | 245°C                 |


### Table (1.2) Package Thickness/Volume and Classification Temperature (T<sub>c</sub>)

Reflow is referred to standard IPC/JEDEC J-STD-020E.




## 9. Packaging Information

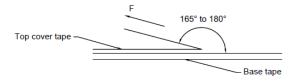
### 9-1. Reel Dimension (Unit: mm)



| Туре     | A             | В         | С             | D     | E       |
|----------|---------------|-----------|---------------|-------|---------|
| 13"x24mm | 24.4+2.0/-0.0 | 100.0±2.0 | 13.0+0.5/-0.2 | 330.0 | 2.0±0.5 |

### 9-2. Tape Dimension (Unit: mm)




| B0         | Bz         | A0         | Az        | K0        | Р          | W          |
|------------|------------|------------|-----------|-----------|------------|------------|
| 14.10±0.10 | 13.00±0.10 | 12.90±0.10 | 7.00±0.10 | 5.50±0.10 | 16.00±0.10 | 24.00±0.30 |
| F          | т          | E          | М         | Ν         | D          | С          |
| 11.50±0.10 | 0.35±0.05  | 1.75       | 4.00      | 2.00      | 1.50       | 3°         |



#### 9-3. Packaging Quantity (Unit: Pcs)

| Chip/ Reel | 500   |
|------------|-------|
| Inner box  | 1,000 |
| Carton     | 4,000 |

#### 9-4. Tearing Off Force



The force for tearing off cover tape is according to the follow table, in the arrow direction under the following conditions.

(Referenced ANSI/EIA-481-D-2008 of 4.11 standard)

| Room          | Room            | Room atm | Tearing           | ] | Tape Size            | 8 mm   | 1: |
|---------------|-----------------|----------|-------------------|---|----------------------|--------|----|
| Temp.<br>(°C) | Humidity<br>(%) | (hPa)    | Speed<br>(mm/min) |   | Tearing Off<br>Force | 10~100 |    |
| 5~35          | 45~85           | 860~1060 | 300±10            |   | (grams)              |        |    |

| Tape Size                       | 8 mm   | 12 to 56 mm | 72 mm or Wider |
|---------------------------------|--------|-------------|----------------|
| Tearing Off<br>Force<br>(grams) | 10~100 | 10~130      | 10~150         |

# Application Notice

1. Storage Conditions

To maintain the solderability of terminal electrodes:

- (a) Recommended products should be used within 12 months from the time of delivery.
- (b) The packaging material should be kept where no chlorine or sulfur exists in the air.
- 2. Transportation
  - (a) Products should be handled with care to avoid damage or contamination from perspiration and skin oils.
  - (b) Vacuum pick up is strongly recommended for individual components.
  - (c) Bulk handling should ensure that abrasion and mechanical shock are minimized.

