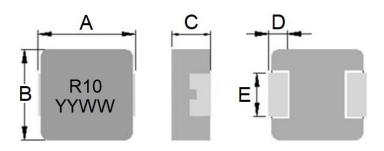
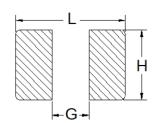
1. Part No. Expression

PIC 0503 HP R 10 Y F

- (a) (b) (c) (d) (e) (f)
- (a) Series Code

(d) Inductance Code

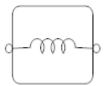

(b) Dimension Code


(e) Tolerance Code

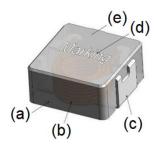
(c) Material Code

(f) Packaging Code

2. Configuration & Dimensions (Unit: mm)


Recommended PCB Layout

Note: 1. The above PCB layout reference only.


- 2. Recommend solder paste thickness at 0.12 mm and above.
- 3. Marking: Top= Inductance Code, Bottom=YYWW (Year/World week), Black

А	В	С	D	Е	L	G	Н
5.7±0.3	5.2±0.2	2.8±0.2	1.1±0.3	2.5±0.3	6.5 Ref	2.5 Ref	2.8 Ref

3. Schematic

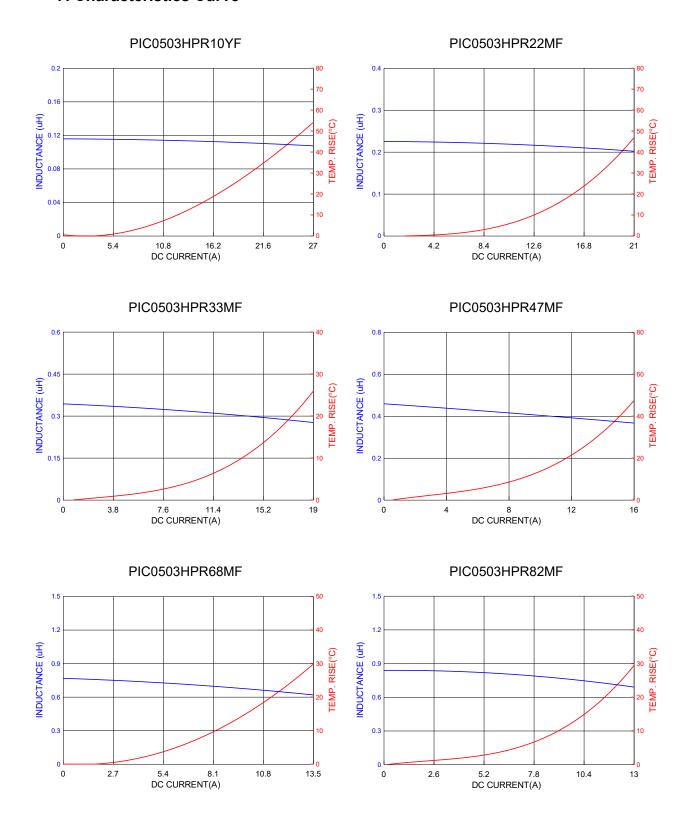
4. Material List

NO	Items		
(a)	Core		
(b)	Wire		
(c)	Clip		
(d)	Ink		
(e)	Paint		

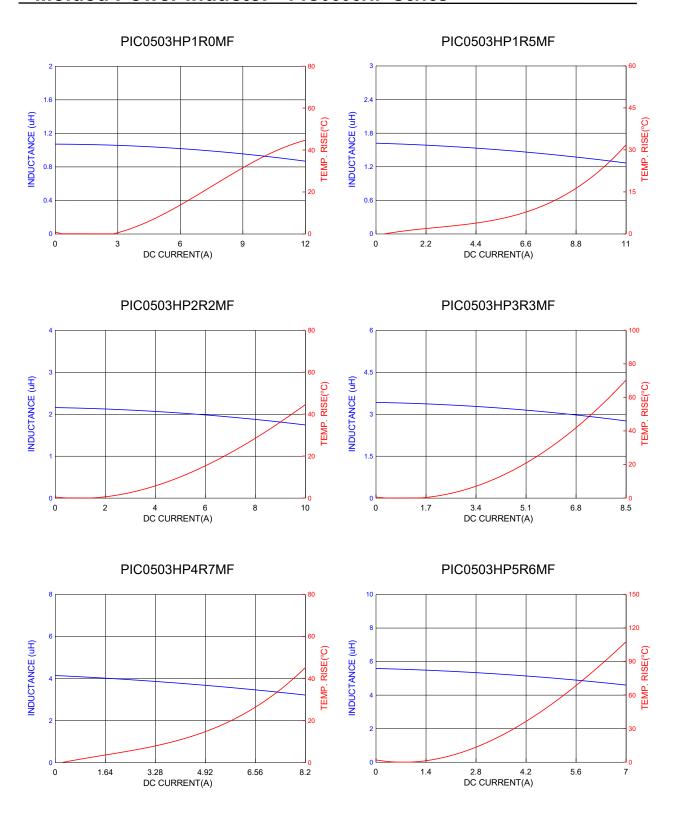
5. General Specifications

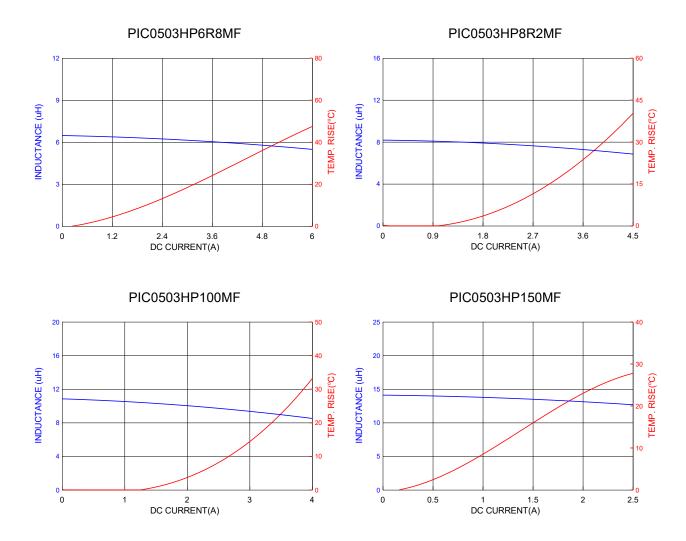
- (a) Operating Temp.: 40°C to + 125°C (including self-temperature rise)
- (b) Storage Temp.: 40°C to + 125°C (on board)
- (c) All test data referenced to 25°C ambient.
- (d) Heat Rated Current (Irms) will cause the coil temperature rise approximately ΔT of 40°C.
- (e) Saturation Current (Isat) will cause inductance L0 to drop approximately 30%.
- (f) Rated DC Current: The lower value of Irms and Isat.
- (g) Part Temperature (Ambient + Temp. Rise): Should not exceed 125°C under worst case operating conditions.
- (h) Maximum Operating Voltage: 50V
- (i) Storage Condition (Component in its packaging)
 - i) Temperature: Less than 40°C
 - ii) Humidity: Less than 60% RH

6. Electrical Characteristics


Part Number	umber Inductance Test (µH) @0A Frequency		Irms (A)	lsat (A)	DCR (mΩ)	
			Тур	Тур	Тур	Max
PIC0503HPR10YF	0.10	1.0V/100KHz	23.0	27.0	2.5	3.0
PIC0503HPR22MF	0.22	1.0V/100KHz	15.5	21.0	3.7	4.4
PIC0503HPR33MF	0.33	1.0V/100KHz	13.7	19.0	4.5	5.2
PIC0503HPR47MF	0.47	1.0V/100KHz	12.2	16.0	6.7	7.1
PIC0503HPR68MF	0.68	1.0V/100KHz	10.2	13.5	8.2	9.0
PIC0503HPR82MF	0.82	1.0V/100KHz	9.3	13.0	10.2	11.9
PIC0503HP1R0MF	1.00	1.0V/100KHz	8.8	12.0	12.6	13.7
PIC0503HP1R5MF	1.50	1.0V/100KHz	7.2	11.0	18.7	20.7
PIC0503HP2R2MF	2.20	1.0V/100KHz	5.8	10.0	25.0	29.2
PIC0503HP3R3MF	3.30	1.0V/100KHz	5.0	8.5	41.0	49.2
PIC0503HP4R7MF	4.70	1.0V/100KHz	3.5	8.2	71.0	77.5
PIC0503HP5R6MF	5.60	1.0V/100KHz	3.0	7.0	88.5	102
PIC0503HP6R8MF	6.80	1.0V/100KHz	2.8	6.0	96.0	112
PIC0503HP8R2MF	8.20	1.0V/100KHz	2.6	4.5	99.0	114
PIC0503HP100MF	10.0	1.0V/100KHz	2.5	4.0	112	130
PIC0503HP150MF	15.0	1.0V/100KHz	1.9	2.5	210	242

Tolerance Code: M =±20%, Y =±30%


 ${\color{red} {NOTE:}} \ Specifications \ subject \ to \ change \ without \ notice. \ Please \ check \ our \ website \ for \ latest \ information.$


7. Characteristics Curve

8. Soldering Specification

Mildly activated rosin fluxes are preferred. Our terminations are suitable for re-flow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

8-1. IR Soldering Reflow

Recommended temperature profiles for lead free re-flow soldering in Figure 1, Table 1.1 & 1.2 (J-STD-020E).

8-2. Iron Reflow

Products attachment with a soldering iron is discouraged due to the inherent process control limitations. In the event that a soldering iron must be employed the following precautions are recommended (Figure 2).

Note:

- (a) Preheat circuit and products to 150°C.
- (b) 355°C tip temperature (Max.)
- (c) Never contact the ceramic with the iron tip
- (d) 1.0mm tip diameter (Max.)
- (e) Use a 20 watt soldering iron with tip diameter of 1.0mm
- (f) Limit soldering time to 4~5 sec.

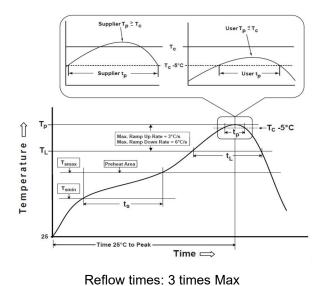
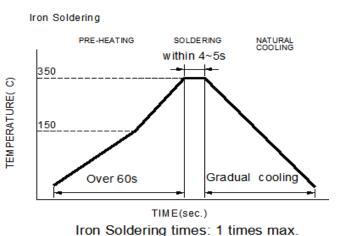



Figure 1: IR Soldering Reflow

Soldering iron method: 350±5°C Max

Figure 2: Iron soldering temperature profiles

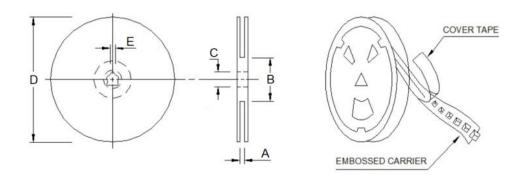
Table (1.1) Reflow Profiles

Profile Type:	Pb-Free Assembly
Preheat	
-Temperature Min (T _{smin})	150°C
-Temperature Max (T _{smax})	200°C
-Time (t _s) from (T _{smin} to T _{smax})	60-120seconds
Ramp-up rate (T _L to T _p)	3°C /second max.
Liquids temperature (T _L)	217°C
Time (t∟) maintained above T∟	60-150 seconds
Classification temperature (Tc)	See Table (1.2)
Time (t _p) at Tc- 5°C (Tp should be equal to or less than Tc.)	*< 30 seconds
Ramp-down rate (Tp to TL)	6°C /second max.
Time 25°C to peak temperature	8 minutes max.

Tp: maximum peak package body temperature, **Tc**: the classification temperature.

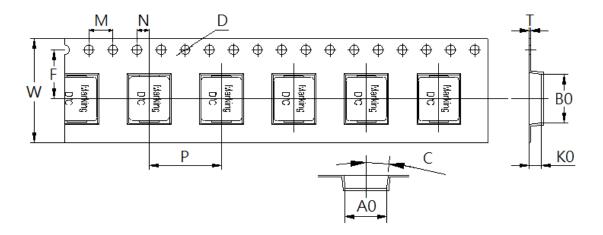
For user (customer) **Tp** should be equal to or less than **Tc**.

Table (1.2) Package Thickness/Volume and Classification Temperature (T_c)


	Package	Volume mm ³	Volume mm ³	Volume
	Thickness	<350	350-2000	mm³ >2000
PB-Free	<1.6mm	260°C	260°C	260°C
	1.6-2.5mm	260°C	250°C	245°C
Assembly	≥2.5mm	250°C	245°C	245°C

Reflow is referred to standard IPC/JEDEC J-STD-020E.

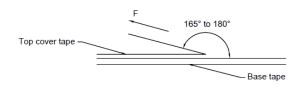
^{*}Tolerance for peak profile temperature (Tp) is defined as a supplier minimum and a user maximum.


9. Packaging Information

9-1. Reel Dimension (Unit: mm)

Туре	А	В	С	D	E
13"x12mm	12.4+2.0/-0.0	100.0±2.0	13.0+0.5/-0.2	330.0	2.0±0.5

9-2. Tape Dimension (Unit: mm)


В0	A0	K0	Р	W	F
6.20±0.10	5.50±0.10	3.30±0.10	8.00±0.10	12.00±0.30	5.50±0.10
Т	D	М	N	С	-
0.35±0.05	1.50±0.10	4.00	2.00	3°	-

9-3. Packaging Quantity (Unit: Pcs)

Chip/ Reel	2,000
Inner box	4,000
Carton	16,000

9-4. Tearing Off Force

The force for tearing off cover tape is according to the follow table, in the arrow direction under the following conditions.

(Referenced ANSI/EIA-481-D-2008 of 4.11 standard)

Room Temp. (°C)	Room Humidity (%)	Room atm (hPa)	Tearing Speed (mm/min)
5~35	45~85	860~1060	300±10

Tape Size	8 mm	12 to 56 mm	72 mm or Wider
Tearing Off Force (grams)	10~100	10~130	10~150

Application Notice

1. Storage Conditions

To maintain the solderability of terminal electrodes:

- (a) Recommended products should be used within 12 months from the time of delivery.
- (b) The packaging material should be kept where no chlorine or sulfur exists in the air.

2. Transportation

- (a) Products should be handled with care to avoid damage or contamination from perspiration and skin oils.
- (b) Vacuum pick up is strongly recommended for individual components.
- (c) Bulk handling should ensure that abrasion and mechanical shock are minimized.

