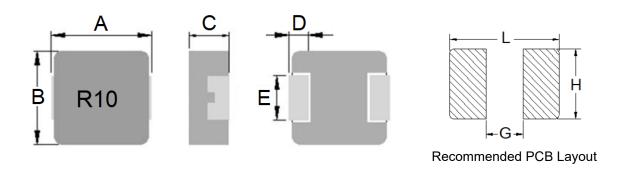
1. Part No. Expression

PIC 0402 HPR10 Y F

- (a) (b) (c) (d) (e) (f)
- (a) Series Code

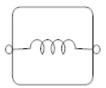

- (d) Inductance Code
- (b) Dimension Code

(e) Tolerance Code

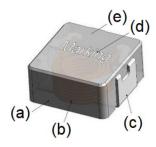
(c) Material Code

(f) Packaging Code

2. Configuration & Dimensions (Unit: mm)



Note: 1. The above PCB layout reference only.


- 2. Recommend solder paste thickness at 0.12 mm and above.
- 3. Marking: Inductance Code, Black

Α	В	С	D	Е	L	G	Н
4.45±0.25	4.06±0.25	1.80±0.20	0.76±0.30	2.00±0.20	5.20 Ref	2.20 Ref	2.40 Ref

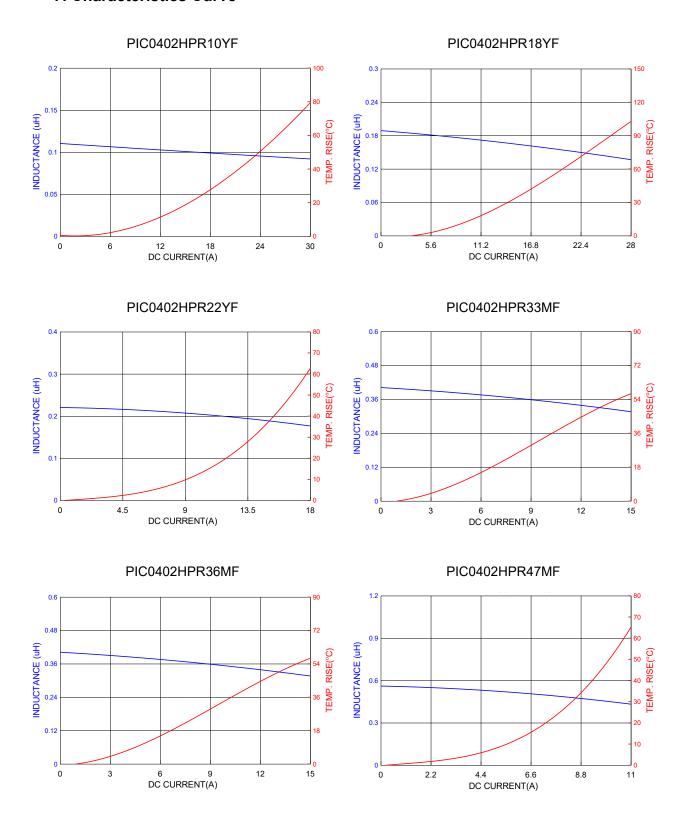
3. Schematic

4. Material List

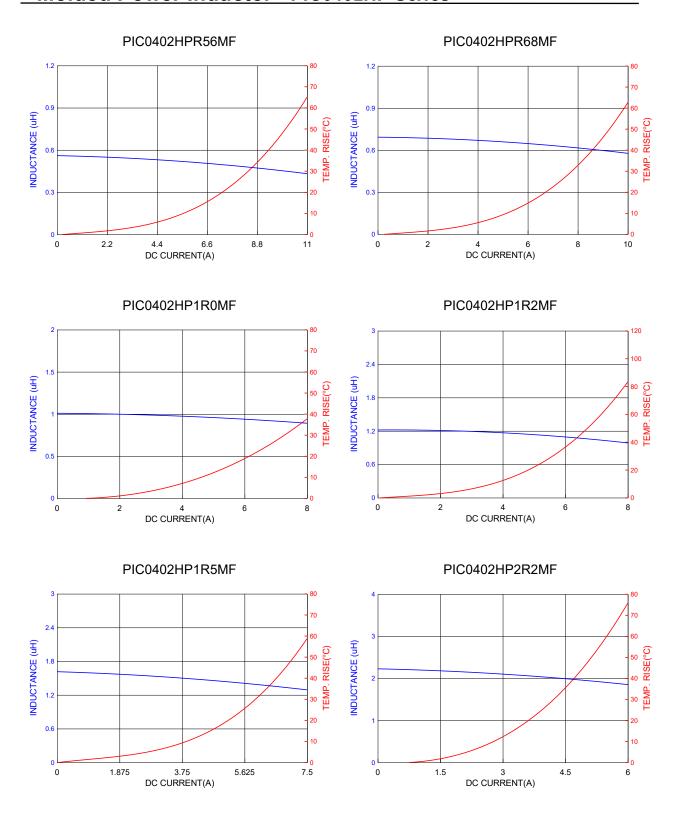
NO	Items	
(a)	Core	
(b)	Wire	
(c)	Clip	
(d)	Ink	
(e)	Paint	

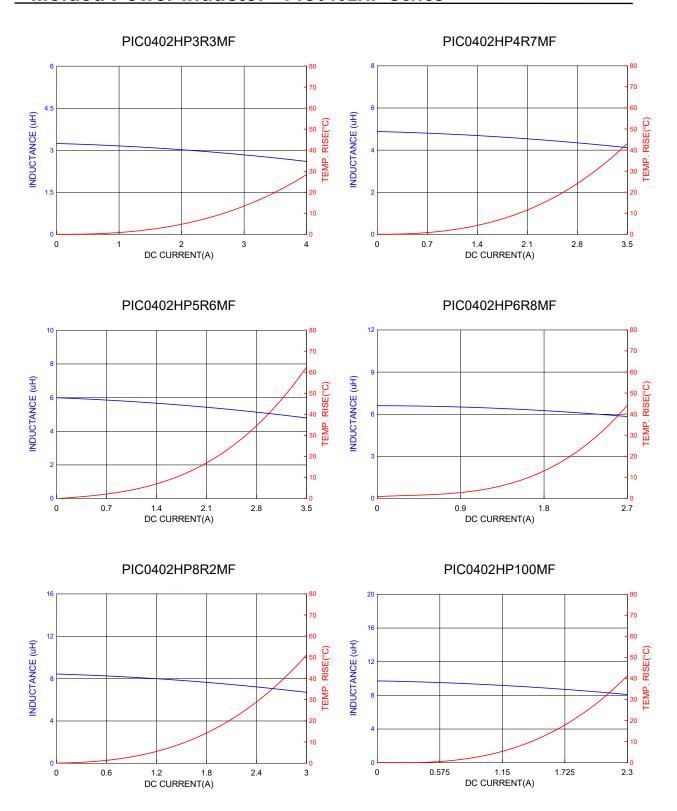
5. General Specifications

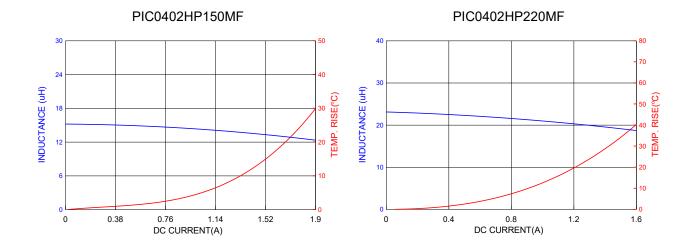
- (a) Operating Temp.: 40°C to + 125°C (including self-temperature rise)
- (b) Storage Temp.: 40°C to + 125°C (on board)
- (c) All test data referenced to 25°C ambient.
- (d) Heat Rated Current (Irms) will cause the coil temperature rise approximately ΔT of 40°C.
- (e) Saturation Current (Isat) will cause inductance L0 to drop approximately 30%.
- (f) Rated DC Current: The lower value of Irms and Isat.
- (g) Part Temperature (Ambient + Temp. Rise): Should not exceed 125°C under worst case operating conditions.
- (h) Maximum Operating Voltage: 40V
- (i) Storage Condition (Component in its packaging)
 - i) Temperature: Less than 40°C
 - ii) Humidity: Less than 60% RH


6. Electrical Characteristics

Part Number	Inductance (µH) @0A	Test Frequency	Irms (A)	Isat (A)	DCR (mΩ)	
	(μπ) @υΑ	Frequency	Тур	Тур	Тур	Max
PIC0402HPR10YF	0.10	1.0V/100KHz	12.0	35.0	3.2	4.0
PIC0402HPR18YF	0.18	1.0V/100KHz	13.5	28.0	4.6	5.4
PIC0402HPR22YF	0.22	1.0V/100KHz	13.0	24.0	6.6	7.3
PIC0402HPR33MF	0.33	1.0V/100KHz	10.0	18.0	7.8	8.6
PIC0402HPR36MF	0.36	1.0V/100KHz	9.0	15.0	8.7	12.0
PIC0402HPR47MF	0.47	1.0V/100KHz	8.0	12.0	11.2	14.0
PIC0402HPR56MF	0.56	1.0V/100KHz	7.3	10.0	13.5	16.0
PIC0402HPR68MF	0.68	1.0V/100KHz	7.0	10.0	16.0	19.0
PIC0402HP1R0MF	1.00	1.0V/100KHz	5.0	8.5	22.0	27.0
PIC0402HP1R2MF	1.20	1.0V/100KHz	4.8	7.8	25.0	30.0
PIC0402HP1R5MF	1.50	1.0V/100KHz	4.5	7.0	34.8	42.0
PIC0402HP2R2MF	2.20	1.0V/100KHz	4.0	6.0	51.0	61.0
PIC0402HP3R3MF	3.30	1.0V/100KHz	3.5	4.0	69.0	76.0
PIC0402HP4R7MF	4.70	1.0V/100KHz	2.6	3.5	95.0	105
PIC0402HP5R6MF	5.60	1.0V/100KHz	2.2	3.0	112	125
PIC0402HP6R8MF	6.80	1.0V/100KHz	2.1	2.8	150	172
PIC0402HP8R2MF	8.20	1.0V/100KHz	2.0	2.5	158	180
PIC0402HP100MF	10.0	1.0V/100KHz	1.8	2.3	215	243
PIC0402HP150MF	15.0	1.0V/100KHz	1.5	1.9	325	374
PIC0402HP220MF	22.0	1.0V/100KHz	1.2	1.4	470	500


Tolerance Code: M =±20%, Y =±30%


7. Characteristics Curve



8. Soldering Specification

Mildly activated rosin fluxes are preferred. Our terminations are suitable for re-flow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

8-1. IR Soldering Reflow

Recommended temperature profiles for lead free re-flow soldering in Figure 1, Table 1.1 & 1.2 (J-STD-020E).

8-2. Iron Reflow

Products attachment with a soldering iron is discouraged due to the inherent process control limitations. In the event that a soldering iron must be employed the following precautions are recommended (Figure 2).

Note:

- (a) Preheat circuit and products to 150°C.
- (b) 355°C tip temperature (Max.)
- (c) Never contact the ceramic with the iron tip
- (d) 1.0mm tip diameter (Max.)
- (e) Use a 20 watt soldering iron with tip diameter of 1.0mm
- (f) Limit soldering time to 4~5 sec.

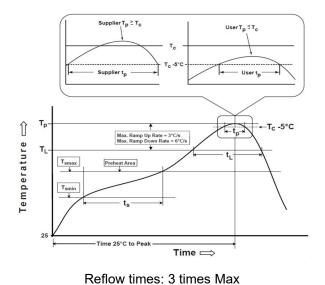
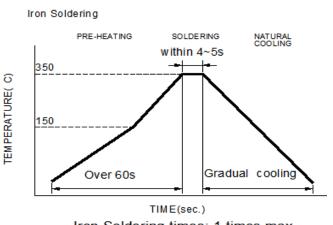



Figure 1: IR Soldering Reflow

Iron Soldering times: 1 times max.

Soldering iron method: 350±5°C Max

Figure 2: Iron soldering temperature profiles

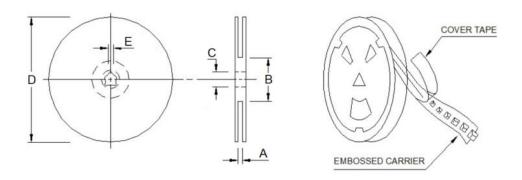
Table (1.1) Reflow Profiles

Profile Type:	Pb-Free Assembly
Preheat	
-Temperature Min (T _{smin})	150°C
-Temperature Max (T _{smax})	200°C
-Time (t _s) from (T _{smin} to T _{smax})	60-120seconds
Ramp-up rate (T _L to T _p)	3°C /second max.
Liquids temperature (T _L)	217°C
Time (t∟) maintained above T∟	60-150 seconds
Classification temperature (Tc)	See Table (1.2)
Time (t _p) at Tc- 5°C (Tp should be equal to or less than Tc.)	*< 30 seconds
Ramp-down rate (Tp to TL)	6°C /second max.
Time 25°C to peak temperature	8 minutes max.

Tp: maximum peak package body temperature, **Tc**: the classification temperature.

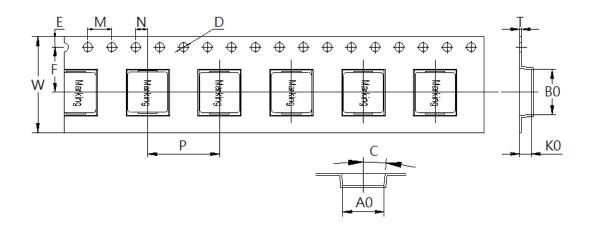
For user (customer) **Tp** should be equal to or less than **Tc**.

Table (1.2) Package Thickness/Volume and Classification Temperature (T_c)


	Package	Volume mm ³	Volume mm ³	Volume
	Thickness	<350	350-2000	mm³ >2000
PB-Free	<1.6mm	260°C	260°C	260°C
	1.6-2.5mm	260°C	250°C	245°C
Assembly	≥2.5mm	250°C	245°C	245°C

Reflow is referred to standard IPC/JEDEC J-STD-020E.

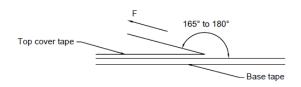
^{*}Tolerance for peak profile temperature (Tp) is defined as a supplier minimum and a user maximum.


9. Packaging Information

9-1. Reel Dimension (Unit: mm)

Туре	А	В	С	D	E
13"x12mm	12.4+2.0/-0.0	100.0±2.0	13.0+0.5/-0.2	330.0	2.0±0.5

9-2. Tape Dimension (Unit: mm)


В0	A0	K0	Р	W	F
5.00±0.10	4.40±0.10	2.30±0.10	8.00±0.10	12.00±0.30	5.50±0.10
Т	E	М	N	D	С
0.35±0.05	1.75	4.00	2.00	1.50	3°

9-3. Packaging Quantity (Unit: Pcs)

Chip/ Reel	3,000
Inner box	6,000
Carton	24,000

9-4. Tearing Off Force

The force for tearing off cover tape is according to the follow table, in the arrow direction under the following conditions.

(Referenced ANSI/EIA-481-D-2008 of 4.11 standard)

Room Temp. (°C)	Room Humidity (%)	Room atm (hPa)	Tearing Speed (mm/min)
5~35	45~85	860~1060	300±10

Tape Size	8 mm	12 to 56 mm	72 mm or Wider
Tearing Off Force (grams)	10~100	10~130	10~150

Application Notice

1. Storage Conditions

To maintain the solderability of terminal electrodes:

- (a) Recommended products should be used within 12 months from the time of delivery.
- (b) The packaging material should be kept where no chlorine or sulfur exists in the air.

2. Transportation

- (a) Products should be handled with care to avoid damage or contamination from perspiration and skin oils.
- (b) Vacuum pick up is strongly recommended for individual components.
- (c) Bulk handling should ensure that abrasion and mechanical shock are minimized.

