1. Part No. Expression

WAQ 7 F UDS 101 - R B - 10

(b) (c) (d)

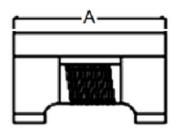
- (e)
- (f) (g)
- (h)

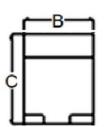
(a) Series Code

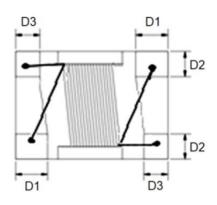
(a)

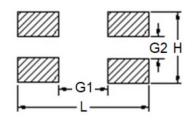
- (e) Inductance Code
- (b) Dimension Code

(f) Packaging Code

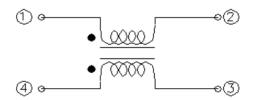

(c) Material Code


(g) Current Code

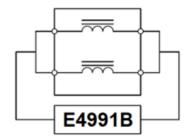

(d) Type Code

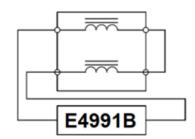

(h) Internal Code

2. Configuration & Dimensions (Unit: mm)


Recommended PCB Layout

Note: The above PCB layout reference only.


А	В	С	D1	D2
4.50±0.20	3.20±0.20	2.80±0.20	0.75±0.20	0.85±0.20
D3	L	Н	G1	G2-
0.60±0.20	5.00 Ref	3.60 Ref	3.40 Ref	1.70 Ref


3. Schematic

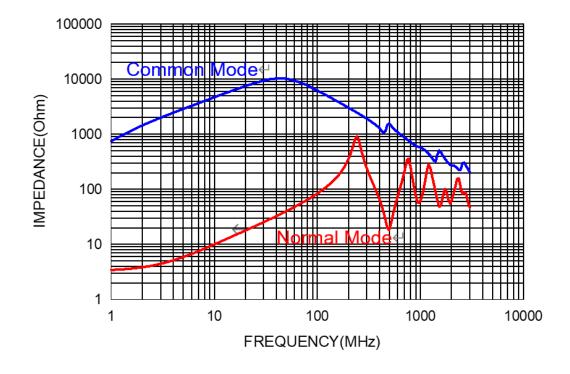
Common mode

Differential mode

4. Material List

- (a) Upper Plate
- (b) Core
- (c) Termination
- (d) Wire

5. General Specifications


- (a) Reliability test for this part meets AEC-Q200 standard.
- (b) Operating Temp.: 40°C to + 125°C (including self-temperature rise)
- (c) Storage Temp.: 40°C to +125°C (on board)
- (d) All test data referenced to 25°C ambient.
- (e) Heat Rated Current (Irms) will cause the coil temperature rise ΔT of 40°C Max.
- (f) Storage Condition (Component in its packaging)
 - i) Temperature: Less than 40°C
 - ii) Humidity: Less than 60% RH

6. Electrical Characteristics

Part Number	Imped (0	non mode edance (Ω) 10MHz	Inductance (µH) +50/-30%	Test Frequency	DCR (Ω) Max	Rated Current (mA)	Rated Voltage (V _{DC})	IR (MΩ) Min
	Min	Тур						
WAQ7FUDS101-RB-10	2000	5800	100	0.1V/100kHz	2.0	200	50	10

7. Characteristics Curve

8. Soldering Specification

Mildly activated rosin fluxes are preferred. Our terminations are suitable for re-flow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

8-1. IR Soldering Reflow

Recommended temperature profiles for lead free re-flow soldering in Figure 1, Table 1.1 & 1.2 (J-STD-020E).

8-2. Iron Reflow

Products attachment with a soldering iron is discouraged due to the inherent process control limitations. In the event that a soldering iron must be employed the following precautions are recommended (Figure 2).

Note:

- (a) Preheat circuit and products to 150°C.
- (b) 355°C tip temperature (Max.)
- (c) Never contact the ceramic with the iron tip
- (d) 1.0mm tip diameter (Max.)
- (e) Use a 20 watt soldering iron with tip diameter of 1.0mm
- (f) Limit soldering time to 4~5 sec.

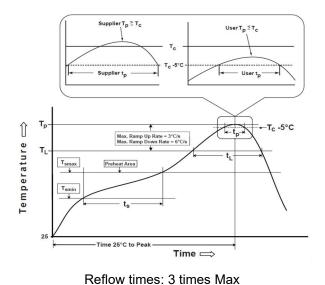
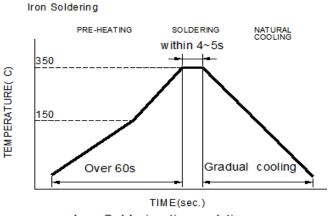



Figure 1: IR Soldering Reflow

Iron Soldering times: 1 times max.

Soldering iron method: 350±5°C Max

Figure 2: Iron soldering temperature profiles

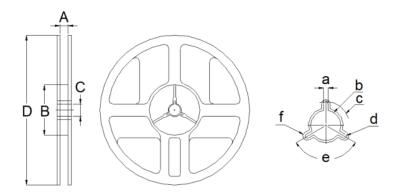
Table (1.1) Reflow Profiles

Profile Type:	Pb-Free Assembly
Preheat	
-Temperature Min (T _{smin})	150°C
-Temperature Max (T _{smax})	200°C
-Time (t _s) from (T _{smin} to T _{smax})	60-120seconds
Ramp-up rate (T _L to T _p)	3°C /second max.
Liquids temperature (T _L)	217°C
Time (t∟) maintained above T∟	60-150 seconds
Classification temperature (Tc)	See Table (1.2)
Time (t _p) at Tc- 5°C (Tp should be equal to or less than Tc.)	*< 30 seconds
Ramp-down rate (T _p to T _L)	6°C /second max.
Time 25°C to peak temperature	8 minutes max.

Tp: maximum peak package body temperature, **Tc**: the classification temperature.

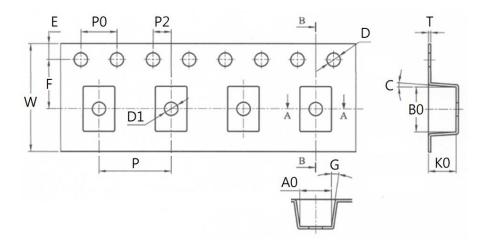
For user (customer) **Tp** should be equal to or less than **Tc**.

Table (1.2) Package Thickness/Volume and Classification Temperature (T_c)


	Package	Volume mm ³	Volume mm ³	Volume
	Thickness	<350	350-2000	mm³ >2000
PB-Free	<1.6mm	260°C	260°C	260°C
	1.6-2.5mm	260°C	250°C	245°C
Assembly	≥2.5mm	250°C	245°C	245°C

Reflow is referred to standard IPC/JEDEC J-STD-020E.

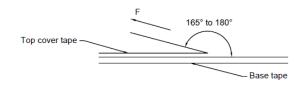
^{*}Tolerance for peak profile temperature (Tp) is defined as a supplier minimum and a user maximum.


9. Packaging Information

9-1. Reel Dimension (Unit: mm)

Туре	А	В	С	D	а
7"x12mm	13.5±0.5	60.0±2.0	13.5±0.5	178.0±2.0	2.0±0.5
b	С	d	е	f	-
13.5±0.5	R10.5	R0.5	120°	R1.9	-

9-2. Tape Dimension (Unit: mm)


Р	P0	P2	В0	A0	K0	D
8.00±0.10	4.00±0.10	2.00±0.05	4.90±0.10	3.60±0.10	3.00±0.10	1.50+0.10/-0.00
D1	E	F	W	Т	С	G
1.50±0.10	1.75±0.10	5.50±0.05	12.00±0.10	0.26±0.05	4°	8°

9-3. Packaging Quantity (Unit: Pcs)

Chip/ Reel	500
Inner Box	2,000
Middle Box	10,000
Carton	20,000

9-4. Tearing Off Force

The force for tearing off cover tape is according to the follow table, in the arrow direction under the following conditions.

(Referenced ANSI/EIA-481-D-2008 of 4.11 standard)

Room Temp. (°C)	Room Humidity (%)	Room atm (hPa)	Tearing Speed (mm/min)
5~35	45~85	860~1060	300±10

Tape Size	8 mm	12 to 56 mm	72 mm or Wider
Tearing Off Force (grams)	10~100	10~130	10~150

Application Notice

1. Storage Conditions

To maintain the solderability of terminal electrodes:

- (a) Recommended products should be used within 12 months from the time of delivery.
- (b) The packaging material should be kept where no chlorine or sulfur exists in the air.

2. Transportation

- (a) Products should be handled with care to avoid damage or contamination from perspiration and skin oils.
- (b) Vacuum pick up is strongly recommended for individual components.
- (c) Bulk handling should ensure that abrasion and mechanical shock are minimized.

