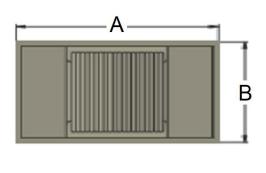
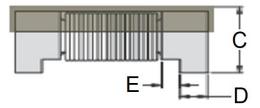
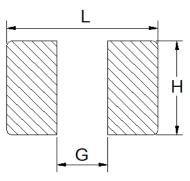
1. Part No. Expression

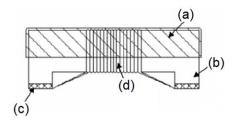

<u>W 6420 F - 701 K - F10</u>


(a) (b) (c) (d) (e) (f)


(a) Series Code

- (d) Inductance Code
- (b) Dimension Code
- (e) Tolerance Code
- (c) Material Code
- (f) Frequency Code

2. Configuration & Dimensions (Unit: mm)



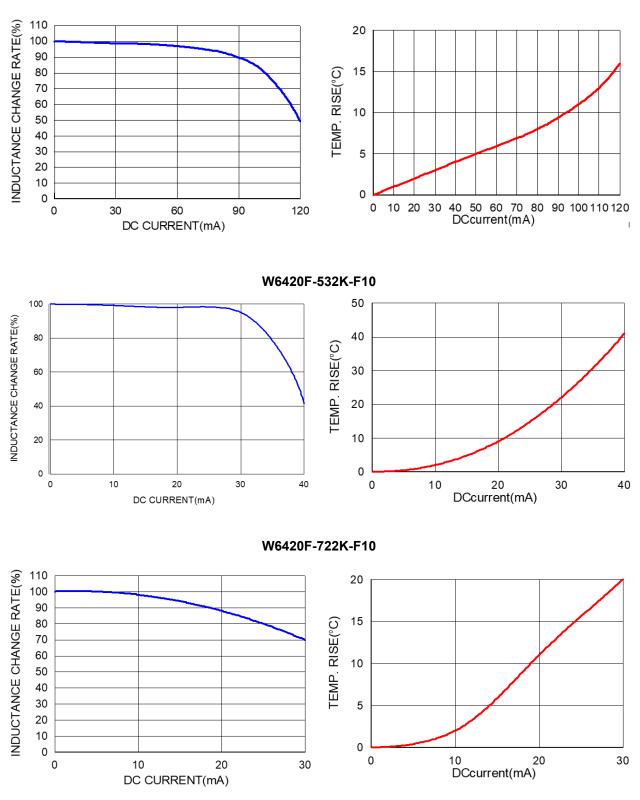
Recommended PCB Layout

A	В	С	D	E	L	G	Н
6.4±0.3	2.3±0.2	1.8±0.2	0.9 Ref	0.5 Ref	7.0 Ref	4.6 Ref	2.0 Ref

3. Material List

NO	Items		
(a)	Upper plate		
(b)	Core		
(c)	Termination		
(d)	Wire		

4. General Specifications


- (a) Operating Temp.: -40°C to +125°C (including self-temperature rise)
- (b) Storage Temp.: -40°C to +125°C (on board)
- (c) All test data referenced to 25°C ambient.
- (d) Heat Rated Current (Irms) will cause the coil temperature rise approximately ΔT of 20°C.
- (e) Storage Condition (Component in its packaging)
 - i) Temperature: Less than 40°C
 - ii) Humidity: Less than 60% RH

5. Electrical Characteristics

Part Number	Inductance (uH) ±10%	Test Frequency	SRF Min	DCR (Ω) ±10%	Rated Current (mA) Max
W6420F-701K-F10	700	0.1V/10KHz	2.45 MHz	12	80
W6420F-532K-F10	5300	0.1V/10KHz	510 KHz	66	30
W6420F-722K-F10	7200	0.1V/10KHz	1.00 MHz	130	15

6. Characteristics Curve

W6420F-701K-F10

7. Soldering Specification

Mildly activated rosin fluxes are preferred. Our terminations are suitable for re-flow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

7-1. IR Soldering Reflow

Recommended temperature profiles for lead free re-flow soldering in Figure 1, Table 1.1 & 1.2 (J-STD-020E).

7-2. Iron Reflow

Products attachment with a soldering iron is discouraged due to the inherent process control limitations. In the event that a soldering iron must be employed the following precautions are recommended (Figure 2).

Note:

- (a) Preheat circuit and products to 150°C.
- (b) 355°C tip temperature (Max.)
- (c) Never contact the ceramic with the iron tip
- (d) 1.0mm tip diameter (Max.)
- (e) Use a 20 watt soldering iron with tip diameter of 1.0mm
- (f) Limit soldering time to 4~5 sec.

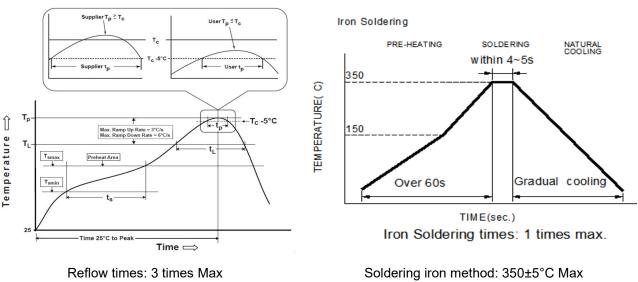
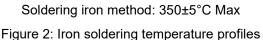



Figure 1: IR Soldering Reflow

Table (1.1) Reflow Profiles

Profile Type:	Pb-Free Assembly
Preheat	
-Temperature Min (T _{smin})	150°C
-Temperature Max (T _{smax})	200°C
-Time (t _s) from (T_{smin} to T_{smax})	60-120seconds
Ramp-up rate (T∟to T _P)	3°C /second max.
Liquids temperature (T∟)	217°C
Time (t∟) maintained above T∟	60-150 seconds
Classification temperature (T _c)	See Table (1.2)
Time (t_p) at Tc- 5°C (Tp should be equal to or less than Tc.)	*< 30 seconds
Ramp-down rate (T _p to T_L)	6°C /second max.
Time 25°C to peak temperature	8 minutes max.

 $\ensuremath{\text{Tp}}$: maximum peak package body temperature, $\ensuremath{\text{Tc}}$: the classification temperature.

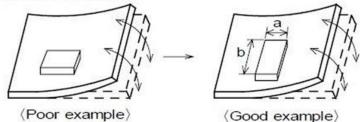
For user (customer) $\ensuremath{\text{Tp}}$ should be equal to or less than $\ensuremath{\text{Tc.}}$

*Tolerance for peak profile temperature (Tp) is defined as a supplier minimum and a user maximum.

. ,	0		•	(-,
	Package	Volume mm ³	Volume mm ³	Volume
	Thickness	<350	350-2000	mm ³ >2000
PB-Free	<1.6mm	260°C	260°C	260°C
	1.6-2.5mm	260°C	250°C	245°C
Assembly	≥2.5mm	250°C	245°C	245°C

Table (1.2) Package Thickness/Volume and Classification Temperature (T_c)

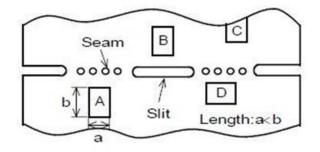
Reflow is referred to standard IPC/JEDEC J-STD-020E.



7-3. Attention regarding P.C.B. bending

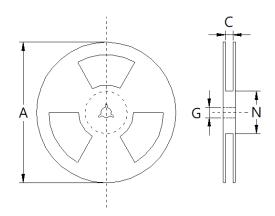
The following shall be considered when designing P.C.B.'S

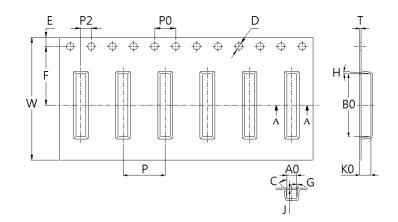
(a) P.C.B. shall be designed so that products are not subjected to the mechanical stress for board warpage.


<Products direction>

Products shall be located in the sideways direction (Length: a<b) to against the mechanical stress.

(b) Products location on P.C.B.:

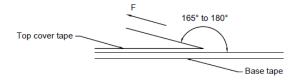

Products (A,B,C,D) shall be located carefully to prevent mechanical stress when warping the board. Products may be subjected to the mechanical stress in the order of A>C>B \equiv D.


8. Packaging Information

8-1. Reel Dimension (Unit: mm)

Туре	А	С	G	Ν
7"x16mm	180.0±2.0	16.5±1.0	13.5±0.5	100.0±2.0

8-2. Tape Dimension (Unit: mm)


Р	P0	P2	В0	A0
8.00±0.10	4.00±0.10	2.00±0.10	6.70±0.10	2.50±0.10
К0	D	E	F	W
2.20±0.10	1.50+0.10/-0.00	1.75±0.10	7.50±0.10	16.00±0.30
Т	С	G	Н	J
0.30±0.05	45°	5°	5°	0.30

8-3. Packaging Quantity (Unit: Pcs)

Chip/ Reel	1,000
------------	-------

8-4. Tearing Off Force

The force for tearing off cover tape is according to the follow table, in the arrow direction under the following conditions.

(Referenced ANSI/EIA-481-D-2008 of 4.11 standard)

Room Temp. (°C)	Room Humidity (%)	Room atm (hPa)	Tearing Speed (mm/min)
5~35	45~85	860~1060	300±10

Tape Size	8 mm	12 to 56 mm	72 mm or Wider
Tearing Off Force (grams)	10~100	10~130	10~150

Application Notice

1. Storage Conditions

To maintain the solderability of terminal electrodes:

- (a) Recommended products should be used within 12 months from the time of delivery.
- (b) The packaging material should be kept where no chlorine or sulfur exists in the air.
- 2. Transportation
 - (a) Products should be handled with care to avoid damage or contamination from perspiration and skin oils.
 - (b) Vacuum pick up is strongly recommended for individual components.
 - (c) Bulk handling should ensure that abrasion and mechanical shock are minimized.

