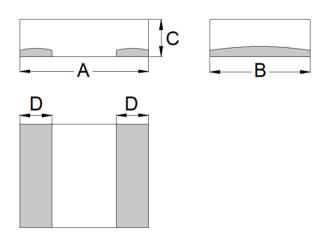
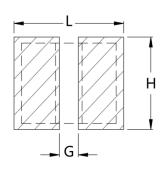
1. Part No. Expression

PIMQ 252010 A R 22 M N

- (a)
- (b)
- (c) (d) (e) (f)
- (a) Series Code

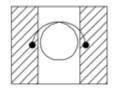

- (d) Inductance Code
- (b) Dimension Code


Tolerance Code

(c) Material Code

(f) Special Code

2. Configuration & Dimensions (Unit: mm)



Recommended PCB Layout

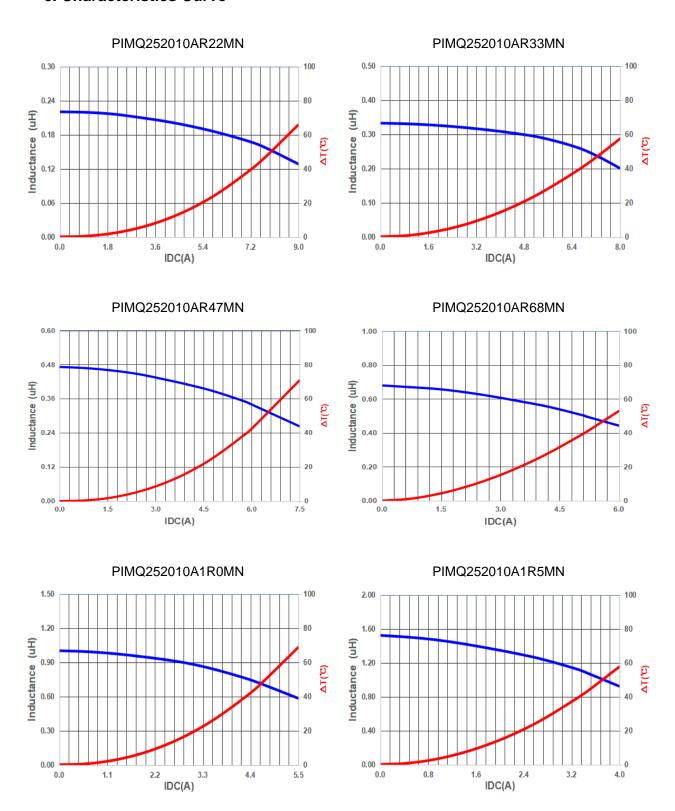
Note: The above PCB layout reference only.

Α	В	С	D	L	G	Н
2.5±0.3	2.0±0.3	0.8±0.2	0.9±0.3	2.9 Ref	0.5 Ref	2.3 Ref

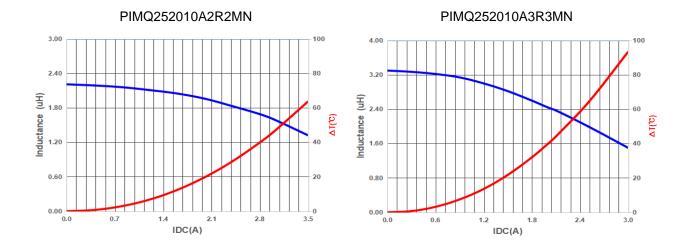
3. Schematic

4. General Specifications

- (a) Reliability test for this part meets AEC-Q200 standard.
- (b) Operating Temp.: 55°C to + 150°C (including self-temperature rise)
- (c) Storage Temp.: 55°C to + 150°C (on board)
- (d) All test data referenced to 25°C ambient.
- (e) Heat Rated Current (Irms) will cause the coil temperature rise approximately ΔT of 40°C.
- (f) Saturation Current (Isat) will cause inductance L0 to drop approximately 30%.
- (g) Rated DC Current: The lower value of Irms and Isat.
- (h) Part Temperature (Ambient + Temp. Rise): Should not exceed 150°C under worst case operating conditions.
- (i) Maximum Operating Voltage: 15V
- (j) Storage Condition (Component in its packaging)


i) Temperature: Less than 40°Cii) Humidity: Less than 60% RH

5. Electrical Characteristics


Part Number	Inductance (µH) @0A	Test	(A)		Isat (A)		DCR (mΩ)	
	±20%	Frequency	Тур	Max	Тур	Max	Тур	Max
PIMQ252010AR22MN	0.22	1.0V/100KHz	7.2	6.6	7.7	7.0	12	15
PIMQ252010AR33MN	0.33	1.0V/100KHz	6.6	6.0	7.2	6.4	16	19
PIMQ252010AR47MN	0.47	1.0V/100KHz	5.8	5.1	6.0	5.4	20	24
PIMQ252010AR68MN	0.68	1.0V/100KHz	5.1	4.7	5.2	4.8	25	30
PIMQ252010A1R0MN	1.00	1.0V/100KHz	4.3	4.0	4.6	3.8	42	50.4
PIMQ252010A1R5MN	1.50	1.0V/100KHz	3.3	3.0	3.5	3.2	60	72
PIMQ252010A2R2MN	2.20	1.0V/100KHz	2.8	2.5	3.0	2.7	85	102
PIMQ252010A3R3MN	3.30	1.0V/100KHz	2.0	1.7	2.1	1.8	130	156

6. Characteristics Curve

7. Soldering Specification

Mildly activated rosin fluxes are preferred. Our terminations are suitable for re-flow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

7-1. IR Soldering Reflow

Recommended temperature profiles for lead free re-flow soldering in Figure 1, Table 1.1 & 1.2 (J-STD-020E).

7-2. Iron Reflow

Products attachment with a soldering iron is discouraged due to the inherent process control limitations. In the event that a soldering iron must be employed the following precautions are recommended (Figure 2).

Note:

- (a) Preheat circuit and products to 150°C.
- (b) 355°C tip temperature (Max.)
- (c) Never contact the ceramic with the iron tip
- (d) 1.0mm tip diameter (Max.)
- (e) Use a 20 watt soldering iron with tip diameter of 1.0mm
- (f) Limit soldering time to 4~5 sec.

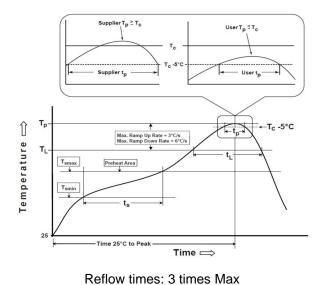
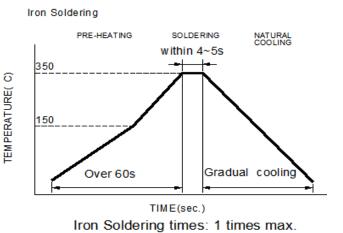



Figure 1: IR Soldering Reflow

Soldering iron method: 350±5°C Max

Figure 2: Iron soldering temperature profiles

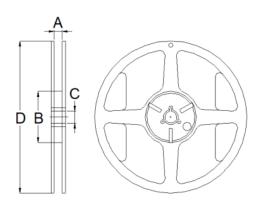
Table (1.1) Reflow Profiles

Profile Type:	Pb-Free Assembly
Preheat	
-Temperature Min (T _{smin})	150°C
-Temperature Max (T _{smax})	200°C
-Time (t _s) from (T _{smin} to T _{smax})	60-120seconds
Ramp-up rate (T _L to T _p)	3°C /second max.
Liquids temperature (T _L)	217°C
Time (t _L) maintained above T _L	60-150 seconds
Classification temperature (Tc)	See Table (1.2)
Time (t _p) at Tc- 5°C (Tp should be equal to or less than Tc.)	*< 30 seconds
Ramp-down rate (Tp to TL)	6°C /second max.
Time 25°C to peak temperature	8 minutes max.

Tp: maximum peak package body temperature, **Tc**: the classification temperature.

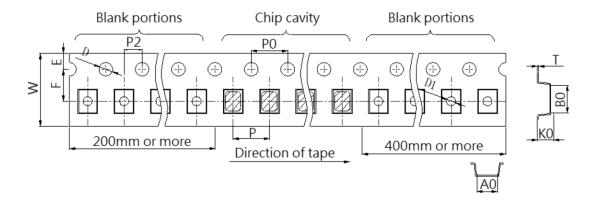
For user (customer) **Tp** should be equal to or less than **Tc**.

Table (1.2) Package Thickness/Volume and Classification Temperature (T_c)


	Package	Volume mm ³	Volume mm ³	Volume
	Thickness	<350	350-2000	mm³ >2000
PB-Free	<1.6mm	260°C	260°C	260°C
	1.6-2.5mm	260°C	250°C	245°C
Assembly	≥2.5mm	250°C	245°C	245°C

Reflow is referred to standard IPC/JEDEC J-STD-020E.

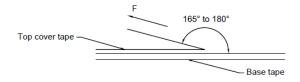
^{*}Tolerance for peak profile temperature (Tp) is defined as a supplier minimum and a user maximum.


8. Packaging Information

8-1. Reel Dimension (Unit: mm)

Туре	А	В	С	D
7"x8mm	8.4+1.5/-0.0	50.0 Min	13.0+5.5/-0.2	178.0±2.0

8-2. Tape Dimension (Unit: mm)


В0	A0	K0	W	Р	P0
2.90±0.10	2.45±0.10	1.35±0.10	8.00±0.10	4.00±0.10	4.00±0.10
P2	Е	F	Т	D/	D1
2.00±0.10	1.75±0.10	3.50±0.10	0.24±0.05	1.50+0.	10/-0.00

8-3. Packaging Quantity (Unit: Pcs)

Chip/ Reel	2,000

8-4. Tearing Off Force

The force for tearing off cover tape is according to the follow table, in the arrow direction under the following conditions.

(Referenced ANSI/EIA-481-D-2008 of 4.11 standard)

Room Temp. (°C)	Room Humidity (%)	Room atm (hPa)	Tearing Speed (mm/min)
5~35	45~85	860~1060	300±10

Tape Size	8 mm	12 to 56 mm	72 mm or Wider
Tearing Off Force (grams)	10~100	10~130	10~150

Application Notice

1. Storage Conditions

To maintain the solderability of terminal electrodes:

- (a) Recommended products should be used within 12 months from the time of delivery.
- (b) The packaging material should be kept where no chlorine or sulfur exists in the air.

2. Transportation

- (a) Products should be handled with care to avoid damage or contamination from perspiration and skin oils.
- (b) Vacuum pick up is strongly recommended for individual components.
- (c) Bulk handling should ensure that abrasion and mechanical shock are minimized.

