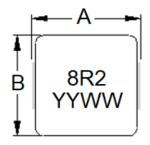
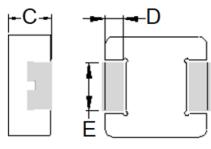
1. Part No. Expression

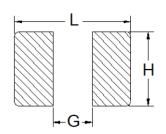
PIA 1206 SP8R2 M N

- (a) (b) (c) (d) (e) (f)
- (a) Series Code

(d) Inductance Code

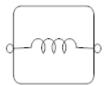

(b) Dimension Code


(e) Tolerance Code

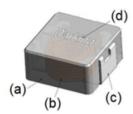

(c) Material Code

(f) Special Code

2. Configuration & Dimensions (Unit: mm)


Recommended PCB Layout

Note:


- 1. The above PCB layout reference only.
- 2. Recommend solder paste thickness at 0.15 mm and above.
- 3. Marking: Top= Inductance Code, Bottom=YYWW (Year/World week), Black

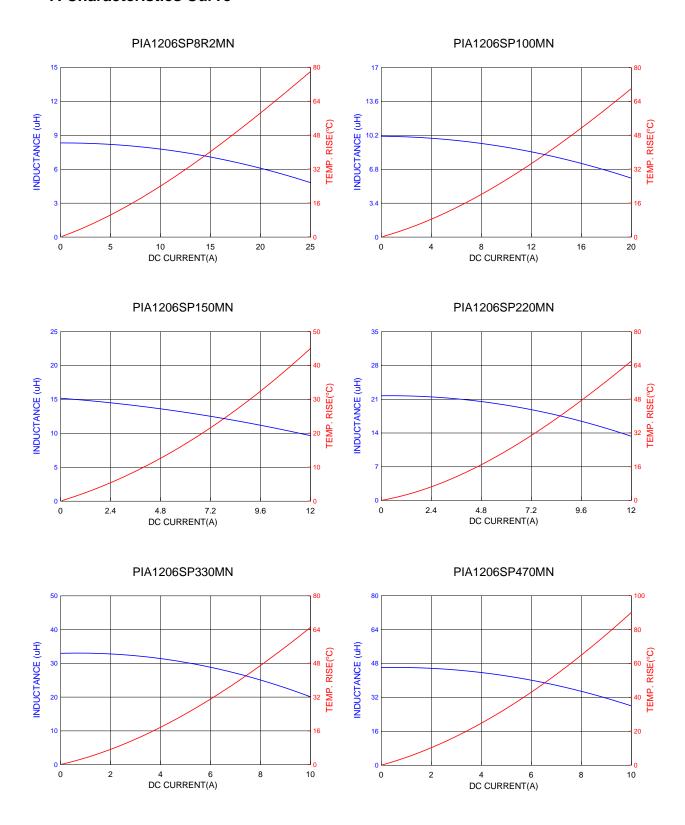
А	В	С	D	E	L	G	Н
13.5±0.5	12.6±0.2	5.7±0.3	2.3±0.3	4.7±0.3	14.5 Ref	8.0 Ref	5.0 Ref

3. Schematic

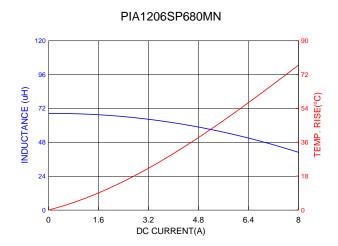
4. Material List

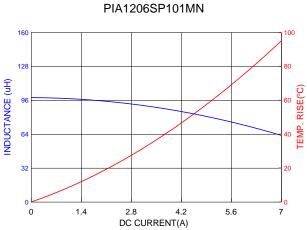
- (a) Core
- (b) Wire
- (c) Terminal
- (d) Ink

5. General Specifications

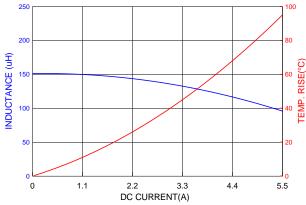

- (a) Operating Temp.: 40°C to + 125°C (including self-temperature rise)
- (b) Storage Temp.: 40°C to + 125°C (on board)
- (c) All test data referenced to 25°C ambient.
- (d) Heat Rated Current (Irms) will cause the coil temperature rise approximately ΔT of 40°C.
- (e) Saturation Current (Isat) will cause inductance L0 to drop approximately 30%.
- (f) Rated DC Current: The lower value of Irms and Isat.
- (g) Part Temperature (Ambient + Temp. Rise): Should not exceed 125°C under worst case operating conditions.
- (h) Maximum Operating Voltage: 80V
- (i) Storage Condition (Component in its packaging)
 - i) Temperature: Less than 40°Cii) Humidity: Less than 60% RH

6. Electrical Characteristics


Part Number	Inductance (µH) @0A	Test	_ (/			Isat (A)		DCR (mΩ)	
	±20%	Frequency	Тур	Max	Тур	Max	Тур	Max	
PIA1206SP8R2MN	8.20	1.0V/100KHz	13.5	12.0	17.0	15.5	13.5	16.0	
PIA1206SP100MN	10.0	1.0V/100KHz	12.0	10.5	16.0	14.5	15.5	18.6	
PIA1206SP150MN	15.0	1.0V/100KHz	10.0	8.50	10.0	9.00	24.0	29.0	
PIA1206SP220MN	22.0	1.0V/100KHz	8.00	7.00	9.00	8.00	31.2	37.5	
PIA1206SP330MN	33.0	1.0V/100KHz	6.50	5.50	7.80	6.70	56.0	68.0	
PIA1206SP470MN	47.0	1.0V/100KHz	5.20	4.50	6.70	5.50	76.0	88.0	
PIA1206SP680MN	68.0	1.0V/100KHz	4.50	3.70	5.80	5.00	103	124	
PIA1206SP101MN	100.0	1.0V/100KHz	3.20	2.80	5.00	4.00	162	195	
PIA1206SP151MN	150.0	1.0V/100KHz	2.60	2.20	4.10	3.20	270	325	



7. Characteristics Curve



PIA1206SP151MN

8. Soldering Specification

Mildly activated rosin fluxes are preferred. Our terminations are suitable for re-flow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

8-1. IR Soldering Reflow

Recommended temperature profiles for lead free re-flow soldering in Figure 1, Table 1.1 & 1.2 (J-STD-020E).

8-2. Iron Reflow

Products attachment with a soldering iron is discouraged due to the inherent process control limitations. In the event that a soldering iron must be employed the following precautions are recommended (Figure 2).

Note:

- (a) Preheat circuit and products to 150°C.
- (b) 355°C tip temperature (Max.)
- (c) Never contact the ceramic with the iron tip
- (d) 1.0mm tip diameter (Max.)
- (e) Use a 20 watt soldering iron with tip diameter of 1.0mm
- (f) Limit soldering time to 4~5 sec.

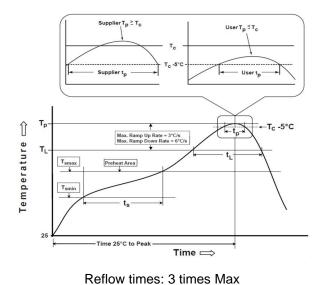
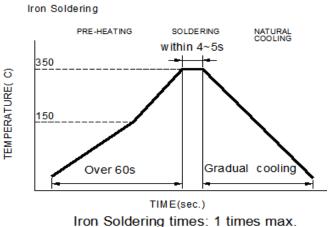



Figure 1: IR Soldering Reflow

non coldoning times. I times max

Soldering iron method: 350±5°C Max Figure 2: Iron soldering temperature profiles

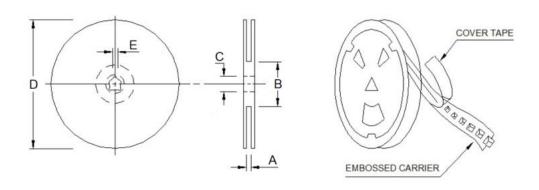
Table (1.1) Reflow Profiles

Profile Type:	Pb-Free Assembly
Preheat	
-Temperature Min (T _{smin})	150°C
-Temperature Max (T _{smax})	200°C
-Time (t _s) from (T _{smin} to T _{smax})	60-120seconds
Ramp-up rate (T _L to T _p)	3°C /second max.
Liquids temperature (T _L)	217°C
Time (t _L) maintained above T _L	60-150 seconds
Classification temperature (Tc)	See Table (1.2)
Time (t _p) at Tc- 5°C (Tp should be equal to or less than Tc.)	*< 30 seconds
Ramp-down rate (Tp to TL)	6°C /second max.
Time 25°C to peak temperature	8 minutes max.

Tp: maximum peak package body temperature, **Tc**: the classification temperature.

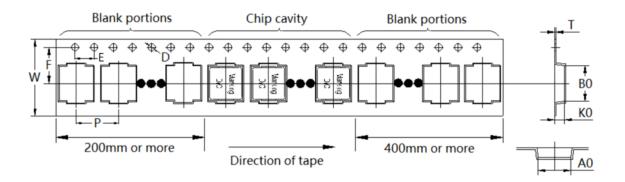
For user (customer) Tp should be equal to or less than Tc.

Table (1.2) Package Thickness/Volume and Classification Temperature (T_c)


	Package	Volume mm ³	Volume mm ³	Volume
	Thickness	<350	350-2000	mm³ >2000
PB-Free	<1.6mm	260°C	260°C	260°C
	1.6-2.5mm	260°C	250°C	245°C
Assembly	≥2.5mm	250°C	245°C	245°C

Reflow is referred to standard IPC/JEDEC J-STD-020E.

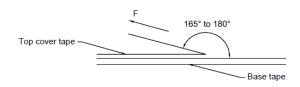
^{*}Tolerance for peak profile temperature (Tp) is defined as a supplier minimum and a user maximum.


9. Packaging Information

9-1. Reel Dimension (Unit: mm)

Туре	А	В	С	D	Е
13"x24mm	24.4+2.0/-0.0	100.0±2.0	13.5±0.5	330.0	2.0±0.5

9-2. Tape Dimension (Unit: mm)


В0	A0	K0	Р	W
14.10±0.10	12.90±0.10	6.50±0.10	16.00±0.10	24.00±0.30
F	Т	D	Е	-
11.50±0.10	0.35±0.05	1.50±0.10	4.00	-

9-3. Packaging Quantity (Unit: Pcs)

Chip/ Reel	500
Inner box	1,000
Carton	4,000

9-4. Tearing Off Force

The force for tearing off cover tape is according to the follow table, in the arrow direction under the following conditions.

(Referenced ANSI/EIA-481-D-2008 of 4.11 standard)

Room Temp. (°C)	Room Humidity (%)	Room atm (hPa)	Tearing Speed (mm/min)
5~35	45~85	860~1060	300±10

Tape Size	8 mm	12 to 56 mm	72 mm or Wider
Tearing Off Force (grams)	10~100	10~130	10~150

Application Notice

1. Storage Conditions

To maintain the solderability of terminal electrodes:

- (a) Recommended products should be used within 12 months from the time of delivery.
- (b) The packaging material should be kept where no chlorine or sulfur exists in the air.

2. Transportation

- (a) Products should be handled with care to avoid damage or contamination from perspiration and skin oils.
- (b) Vacuum pick up is strongly recommended for individual components.
- (c) Bulk handling should ensure that abrasion and mechanical shock are minimized.

