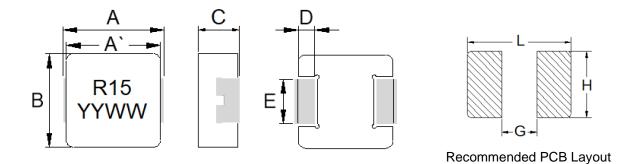
1. Part No. Expression

<u>PIA0605 S R15 M N</u>


(a) (b) (c) (d) (e) (f)

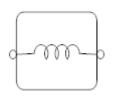
(a) Series Code

(c)

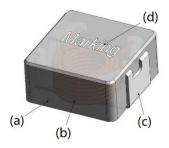
- (b) Dimension Code
 - Material Code
- (d) Inductance Code
- (e) Tolerance Code
- (f) Special Code

2. Configuration & Dimensions (Unit: mm)

Note: 1. The above PCB layout reference only.


2. Recommend solder paste thickness at 0.15 mm and above.

3. Marking: Top= Inductance Code, Bottom=YYWW (Year/World week), Black


A	A'	В	С	D
7.3±0.3	6.7±0.2	6.6±0.3	4.8±0.2	1.6±0.3
E	L	G	Н	-
3.0±0.2	8.0 Ref	3.5 Ref	3.4 Ref	-

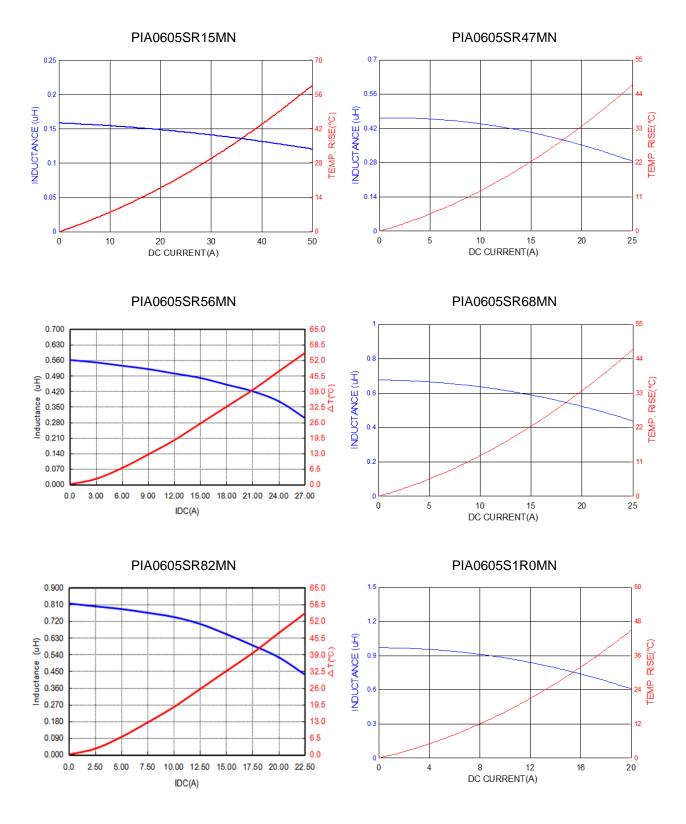
3. Schematic

4. Material List

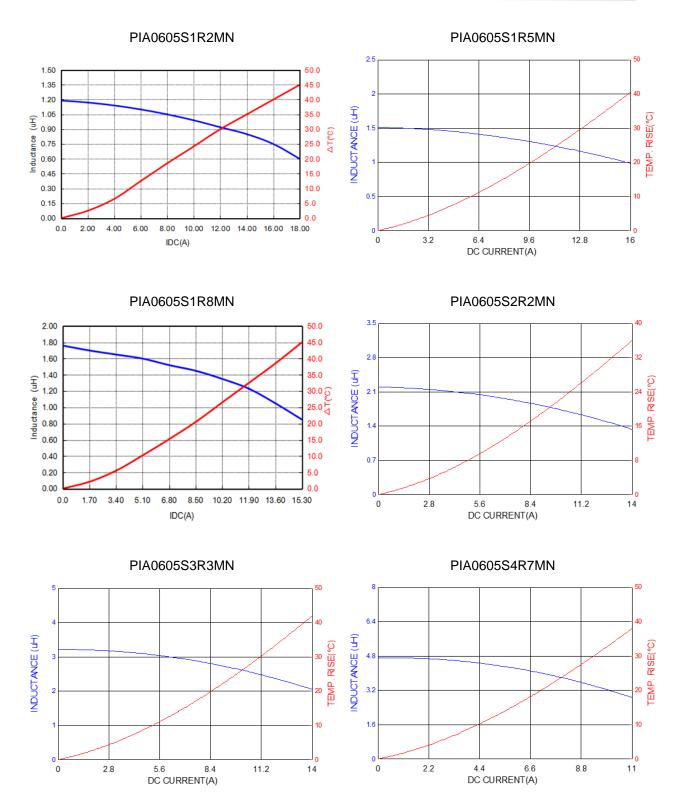
(a)	Core
(b)	Wire
(c)	Terminal
(d)	Ink

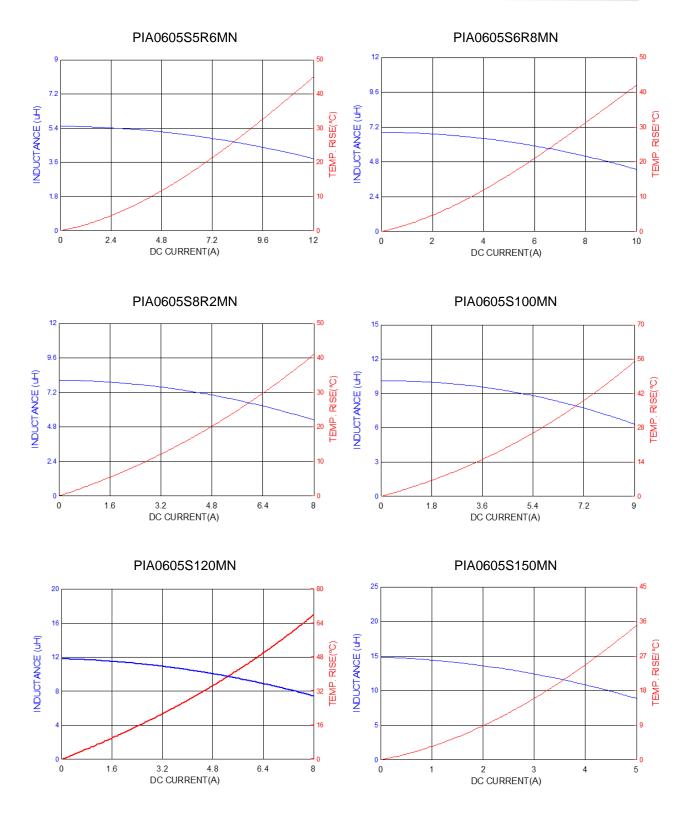
5. General Specifications

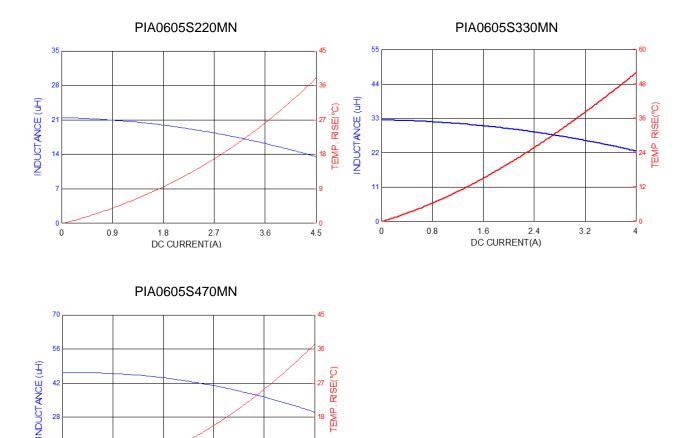
- (a) Operating Temp.: 40°C to + 125°C (including self-temperature rise)
- (b) Storage Temp.: 40°C to + 125°C (on board)
- (c) All test data referenced to 25°C ambient.
- (d) Heat Rated Current (Irms) will cause the coil temperature rise approximately ΔT of 40°C.
- (e) Saturation Current (Isat) will cause inductance L0 to drop approximately 30%.
- (f) Rated DC Current: The lower value of Irms and Isat.
- (g) Part Temperature (Ambient + Temp. Rise): Should not exceed 125°C under worst case operating conditions.
- (h) Maximum Operating Voltage: 50V
- (i) Storage Condition (Component in its packaging)
 - i) Temperature: Less than 40°C
 - ii) Humidity: Less than 60% RH



6. Electrical Characteristics


Part Number	Inductance (µH) @0A	Test		ns A)	Isat (A)		DCR (mΩ)	
	±20%	Frequency	Тур	Max	Тур	Max	Тур	Max
PIA0605SR15MN	0.15	1.0V/100KHz	35.0	32.0	45.0	40.0	1.3	1.7
PIA0605SR47MN	0.47	1.0V/100KHz	22.0	20.0	22.0	20.0	2.9	3.3
PIA0605SR56MN	0.56	1.0V/100KHz	21.0	19.0	21.0	18.0	3.4	3.9
PIA0605SR68MN	0.68	1.0V/100KHz	20.0	18.0	20.0	17.0	3.6	4.1
PIA0605SR82MN	0.82	1.0V/100KHz	18.0	16.0	18.0	15.0	5.3	5.9
PIA0605S1R0MN	1.00	1.0V/100KHz	17.0	15.0	16.0	13.0	5.6	6.2
PIA0605S1R2MN	1.20	1.0V/100KHz	16.0	14.0	14.0	11.0	6.4	7.1
PIA0605S1R5MN	1.50	1.0V/100KHz	15.0	13.0	13.0	10.5	6.6	7.3
PIA0605S1R8MN	1.80	1.0V/100KHz	14.5	12.5	11.0	9.0	7.6	9.0
PIA0605S2R2MN	2.20	1.0V/100KHz	14.0	12.0	10.0	8.5	10.0	11.5
PIA0605S3R3MN	3.30	1.0V/100KHz	13.0	11.0	9.5	8.0	14.0	16.2
PIA0605S4R7MN	4.70	1.0V/100KHz	11.0	9.5	8.8	7.5	20.8	24.0
PIA0605S5R6MN	5.60	1.0V/100KHz	10.0	8.5	8.0	7.2	28.0	33.0
PIA0605S6R8MN	6.80	1.0V/100KHz	9.0	8.0	7.6	7.0	30.0	36.0
PIA0605S8R2MN	8.20	1.0V/100KHz	7.5	6.5	6.5	6.0	38.5	45.0
PIA0605S100MN	10.0	1.0V/100KHz	7.0	6.0	6.0	5.7	44.0	53.0
PIA0605S120MN	12.0	1.0V/100KHz	5.8	4.8	5.1	4.7	56.0	68.0
PIA0605S150MN	15.0	1.0V/100KHz	5.0	4.0	4.0	3.2	73.0	85.0
PIA0605S220MN	22.0	1.0V/100KHz	4.2	3.6	3.6	3.1	122	142
PIA0605S330MN	33.0	1.0V/100KHz	3.0	2.5	2.3	1.8	142	170
PIA0605S470MN	47.0	1.0V/100KHz	2.6	2.0	1.8	1.5	275	320


7. Characteristics Curve



27

18

q

2.6

2.08

1.56

NOTE: Specifications subject to change without notice. Please check our website for latest information.

42

28

14

0

0.52

1.04

DC CURRENT(A)

8. Soldering Specification

Mildly activated rosin fluxes are preferred. Our terminations are suitable for re-flow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

8-1. IR Soldering Reflow

Recommended temperature profiles for lead free re-flow soldering in Figure 1, Table 1.1 & 1.2 (J-STD-020E).

8-2. Iron Reflow

Products attachment with a soldering iron is discouraged due to the inherent process control limitations. In the event that a soldering iron must be employed the following precautions are recommended (Figure 2).

Note:

- (a) Preheat circuit and products to 150°C.
- (b) 355°C tip temperature (Max.)
- (c) Never contact the ceramic with the iron tip
- (d) 1.0mm tip diameter (Max.)
- (e) Use a 20 watt soldering iron with tip diameter of 1.0mm
- (f) Limit soldering time to 4~5 sec.

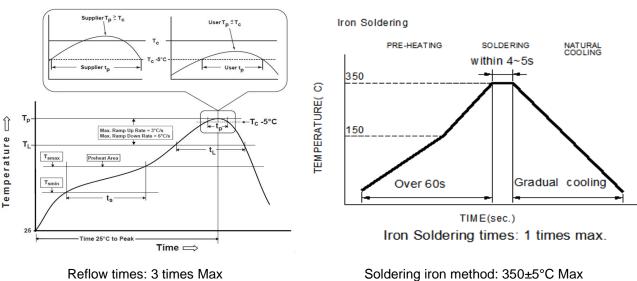


Figure 1: IR Soldering Reflow

Soldering iron method: 350±5°C Max Figure 2: Iron soldering temperature profiles

P8

Table (1.1) Reflow Profiles

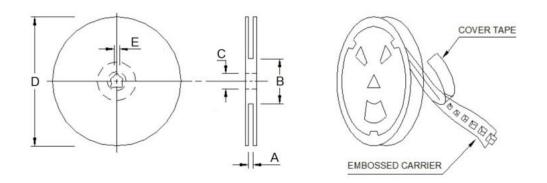
Profile Type:	Pb-Free Assembly
Preheat	
-Temperature Min (T _{smin})	150°C
-Temperature Max (T _{smax})	200°C
-Time (t _s) from (T _{smin} to T _{smax})	60-120seconds
Ramp-up rate (T∟to T _P)	3°C /second max.
Liquids temperature (T∟)	217°C
Time (t∟) maintained above T∟	60-150 seconds
Classification temperature (T _c)	See Table (1.2)
Time (t_p) at Tc- 5°C (Tp should be equal to or less than Tc.)	*< 30 seconds
Ramp-down rate (T _p to T_L)	6°C /second max.
Time 25°C to peak temperature	8 minutes max.

Tp: maximum peak package body temperature, Tc: the classification temperature.

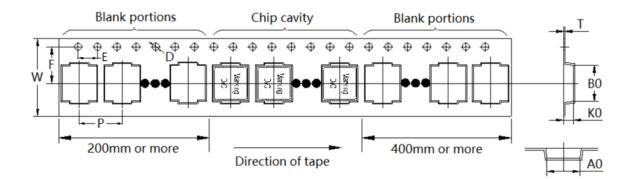
For user (customer) **Tp** should be equal to or less than **Tc**.

*Tolerance for peak profile temperature (Tp) is defined as a supplier minimum and a user maximum.

· · ·	0		•	()
	Package Volume mm ³		Volume mm ³	Volume
	Thickness	<350	350-2000	mm ³ >2000
PB-Free	<1.6mm	260°C	260°C	260°C
	1.6-2.5mm	260°C	250°C	245°C
Assembly	≥2.5mm	250°C	245°C	245°C


Table (1.2) Package Thickness/Volume and Classification Temperature (T_c)

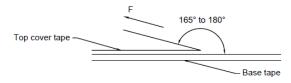
Reflow is referred to standard IPC/JEDEC J-STD-020E.


9. Packaging Information

9-1. Reel Dimension (Unit: mm)

Туре	А	В	С	D	E
13"x16mm	16.4+2.0/-0.0	100.0±2.0	13.0+0.5/-0.2	330.0	2.0±0.5

9-2. Tape Dimension (Unit: mm)


В0	A0	K0	Р	W
7.70±0.10	7.00±0.10	5.30±0.10	12.00±0.10	16.00±0.30
F	Т	D	Е	-
7.50±0.10	0.35±0.05	1.50±0.10	4.00	-

9-3. Packaging Quantity (Unit: Pcs)

Chip/ Reel	800
Inner box	1,600
Carton	6,400

9-4. Tearing Off Force

The force for tearing off cover tape is according to the follow table, in the arrow direction under the following conditions.

(Referenced ANSI/EIA-481-D-2008 of 4.11 standard)

Room	Room	Room atm	Tearing		Tape Size	8 mm
Temp. (°C)	Humidity (%)	(hPa)	Speed (mm/min)		Tearing Off Force	10~100
5~35	45~85	860~1060	300±10		(grams)	

Tape Size	8 mm	12 to 56 mm	72 mm or Wider
Tearing Off Force (grams)	10~100	10~130	10~150

Application Notice

1. Storage Conditions

To maintain the solderability of terminal electrodes:

- (a) Recommended products should be used within 12 months from the time of delivery.
- (b) The packaging material should be kept where no chlorine or sulfur exists in the air.
- 2. Transportation
 - (a) Products should be handled with care to avoid damage or contamination from perspiration and skin oils.
 - (b) Vacuum pick up is strongly recommended for individual components.
 - (c) Bulk handling should ensure that abrasion and mechanical shock are minimized.

