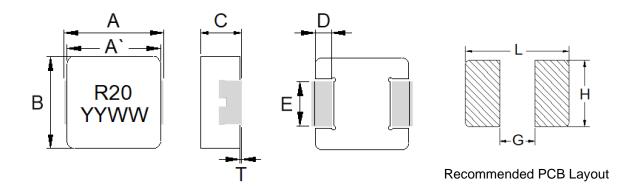
1. Part No. Expression


PIA 0503 S R 20 M N

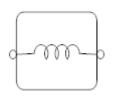
(a) (b) (c) (d) (e) (f)

- (a) Series Code
- (b) Dimension Code
- (c) Material Code

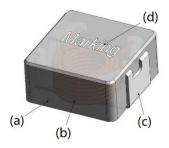
- (d) Inductance Code
- (e) Tolerance Code
- (f) Special Code

2. Configuration & Dimensions (Unit: mm)

Note: 1. The above PCB layout reference only.


2. Recommend solder paste thickness at 0.12 mm and above.

3. Marking: Top= Inductance Code, Bottom=YYWW (Year/World week), Black


A	A'	В	С	D
5.70±0.30	5.20±0.30	5.20±0.20	2.80±0.20	1.00±0.30
E	т	L	G	н
2.00±0.20	0.00~0.15	6.00 Ref	2.80 Ref	2.50 Ref

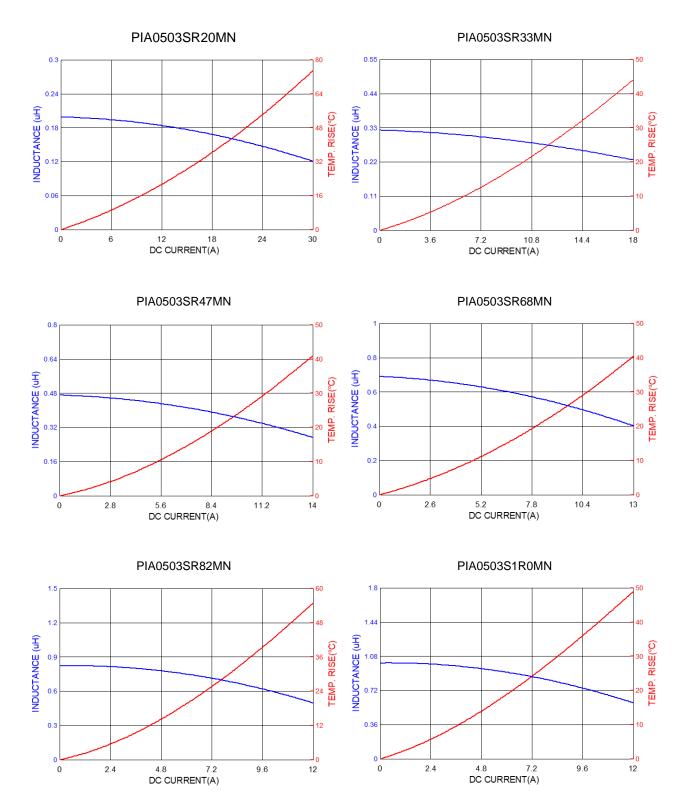
3. Schematic

4. Material List

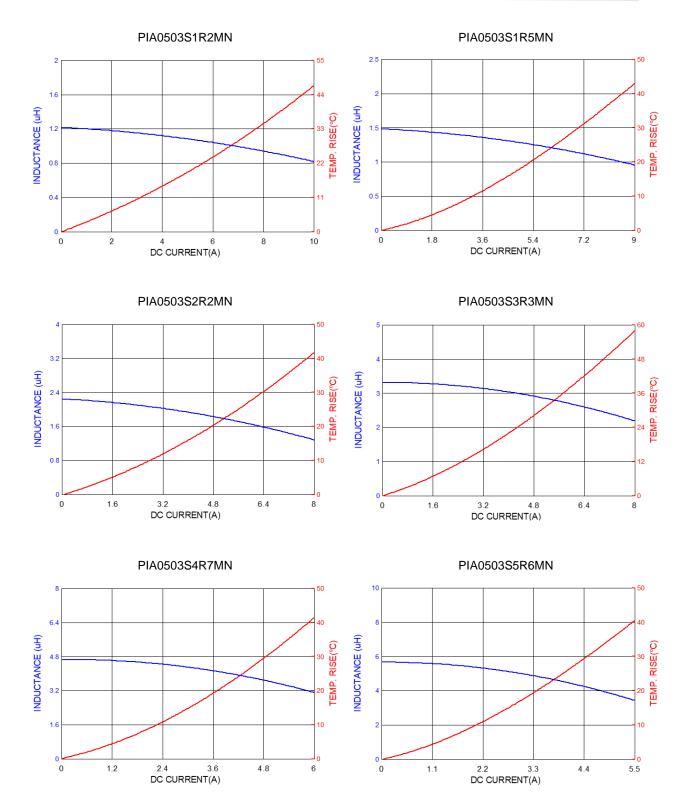
(a)	Core
(b)	Wire
(c)	Terminal
(d)	Ink

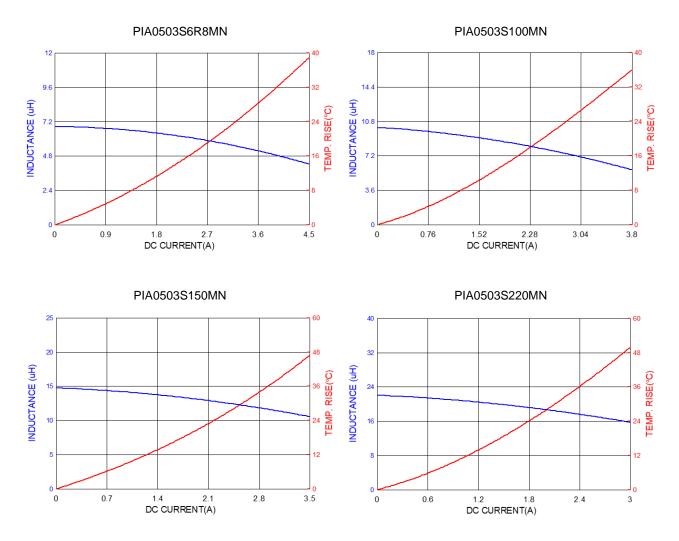
5. General Specifications

- (a) Operating Temp.: 40°C to + 125°C (including self-temperature rise)
- (b) Storage Temp.: 40°C to + 125°C (on board)
- (c) All test data referenced to 25°C ambient.
- (d) Heat Rated Current (Irms) will cause the coil temperature rise approximately ΔT of 40°C.
- (e) Saturation Current (Isat) will cause inductance L0 to drop approximately 30%.
- (f) Rated DC Current: The lower value of Irms and Isat.
- (g) Part Temperature (Ambient + Temp. Rise): Should not exceed 125°C under worst case operating conditions.
- (h) Maximum Operating Voltage: 30V
- (i) Storage Condition (Component in its packaging)
 - i) Temperature: Less than 40°C
 - ii) Humidity: Less than 60% RH



6. Electrical Characteristics


Part Number	Inductance (µH) @0A	Test		ns A)		at A)		CR Ω)
	±20%	Frequency	Тур	Max	Тур	Max	Тур	Max
PIA0503SR20MN	0.20	1.0V/100KHz	18.0	16.0	24.0	21.0	2.5	2.8
PIA0503SR33MN	0.33	1.0V/100KHz	16.0	14.0	12.0	10.0	4.5	5.4
PIA0503SR47MN	0.47	1.0V/100KHz	13.5	12.0	10.0	9.0	5.2	6.0
PIA0503SR68MN	0.68	1.0V/100KHz	12.5	11.0	9.0	8.0	7.4	8.5
PIA0503SR82MN	0.82	1.0V/100KHz	10.0	9.0	8.8	7.7	8.0	9.2
PIA0503S1R0MN	1.00	1.0V/100KHz	9.0	8.0	8.5	7.5	10.5	12.0
PIA0503S1R2MN	1.20	1.0V/100KHz	8.5	7.5	8.0	7.0	12.0	14.4
PIA0503S1R5MN	1.50	1.0V/100KHz	8.0	7.0	7.5	6.5	13.6	15.7
PIA0503S2R2MN	2.20	1.0V/100KHz	7.0	6.5	6.5	5.8	21.6	25.0
PIA0503S3R3MN	3.30	1.0V/100KHz	6.3	5.8	6.0	5.3	28.0	33.0
PIA0503S4R7MN	4.70	1.0V/100KHz	5.5	4.8	5.3	4.6	38.0	44.0
PIA0503S5R6MN	5.60	1.0V/100KHz	5.0	4.3	4.6	4.0	50.0	58.0
PIA0503S6R8MN	6.80	1.0V/100KHz	4.3	3.7	3.5	3.1	57.0	66.0
PIA0503S100MN	10.0	1.0V/100KHz	3.8	3.4	2.5	2.1	88.0	103
PIA0503S150MN	15.0	1.0V/100KHz	2.9	2.5	2.2	1.7	140	170
PIA0503S220MN	22.0	1.0V/100KHz	2.4	2.0	2.0	1.7	190	228


7. Characteristics Curve

8. Soldering Specification

Mildly activated rosin fluxes are preferred. Our terminations are suitable for re-flow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

8-1. IR Soldering Reflow

Recommended temperature profiles for lead free re-flow soldering in Figure 1, Table 1.1 & 1.2 (J-STD-020E).

8-2. Iron Reflow

Products attachment with a soldering iron is discouraged due to the inherent process control limitations. In the event that a soldering iron must be employed the following precautions are recommended (Figure 2).

Note:

- (a) Preheat circuit and products to 150°C.
- (b) 355°C tip temperature (Max.)
- (c) Never contact the ceramic with the iron tip
- (d) 1.0mm tip diameter (Max.)
- (e) Use a 20 watt soldering iron with tip diameter of 1.0mm
- (f) Limit soldering time to 4~5 sec.

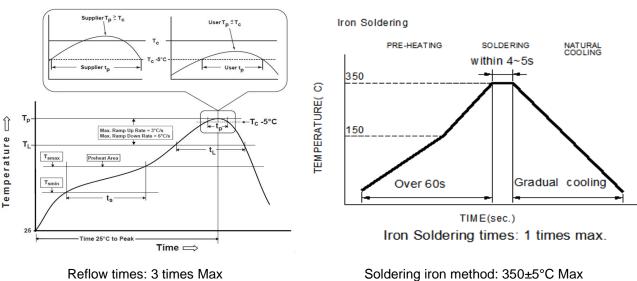


Figure 1: IR Soldering Reflow

Soldering iron method: 350±5°C Max Figure 2: Iron soldering temperature profiles

Ρ7

Table (1.1) Reflow Profiles

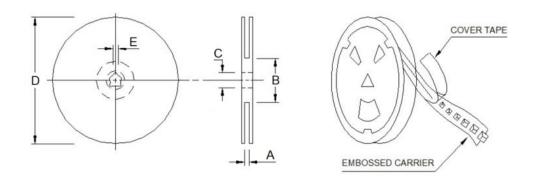
Profile Type:	Pb-Free Assembly	
Preheat		
-Temperature Min (T _{smin})	150°C	
-Temperature Max (T _{smax})	200°C	
-Time (t _s) from (T _{smin} to T _{smax})	60-120seconds	
Ramp-up rate (T_L to T_p)	3°C /second max.	
Liquids temperature (T _L)	217°C	
Time (t∟) maintained above T∟	60-150 seconds	
Classification temperature (T _c)	See Table (1.2)	
Time (t_p) at Tc- 5°C (Tp should be equal to or less than Tc.)	*< 30 seconds	
Ramp-down rate (T _p to T _L)	6°C /second max.	
Time 25°C to peak temperature	8 minutes max.	

 $\ensuremath{\text{Tp}}$: maximum peak package body temperature, $\ensuremath{\text{Tc}}$: the classification temperature.

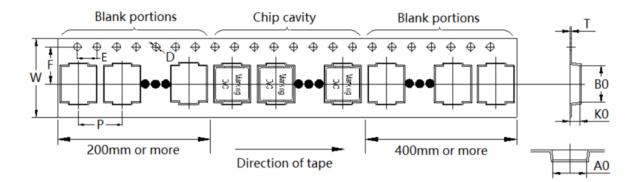
For user (customer) $\ensuremath{\text{Tp}}$ should be equal to or less than $\ensuremath{\text{Tc}}.$

*Tolerance for peak profile temperature (Tp) is defined as a supplier minimum and a user maximum.

· · ·	0		•	()
	Package	Volume mm ³	Volume mm ³	Volume
	Thickness	<350	350-2000	mm ³ >2000
PB-Free	<1.6mm	260°C	260°C	260°C
	1.6-2.5mm	260°C	250°C	245°C
Assembly	≥2.5mm	250°C	245°C	245°C


Table (1.2) Package Thickness/Volume and Classification Temperature (T_c)

Reflow is referred to standard IPC/JEDEC J-STD-020E.


9. Packaging Information

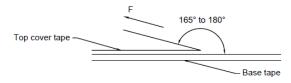
9-1. Reel Dimension (Unit: mm)

Туре	A	В	С	D	E
13"x12mm	12.4+2.0/-0.0	100.0±2.0	13.0+0.5/-0.2	330.0	2.0±0.5

9-2. Tape Dimension (Unit: mm)

B0	A0	K0	Р	W
6.20±0.10	5.60±0.10	3.30±0.10	8.00±0.10	12.00±0.30
F	Т	D	E	-
5.50±0.10	0.35±0.05	1.50±0.10	4.00	-

NOTE: Specifications subject to change without notice. Please check our website for latest information.



P8

9-3. Packaging Quantity (Unit: Pcs)

Chip/ Reel	2,000
Inner box	4,000
Carton	16,000

9-4. Tearing Off Force

The force for tearing off cover tape is according to the follow table, in the arrow direction under the following conditions.

(Referenced ANSI/EIA-481-D-2008 of 4.11 standard)

Room	Room	Room atm	Tearing	Tape Size	8 mm	1:
Temp. (°C)	Humidity (%)	(hPa)	Speed (mm/min)	Tearing Off Force	10~100	
5~35	45~85	860~1060	300±10	(grams)		

Tape Size	8 mm	12 to 56 mm	72 mm or Wider
Tearing Off Force (grams)	10~100	10~130	10~150

Application Notice

1. Storage Conditions

To maintain the solderability of terminal electrodes:

- (a) Recommended products should be used within 12 months from the time of delivery.
- (b) The packaging material should be kept where no chlorine or sulfur exists in the air.
- 2. Transportation
 - (a) Products should be handled with care to avoid damage or contamination from perspiration and skin oils.
 - (b) Vacuum pick up is strongly recommended for individual components.
 - (c) Bulk handling should ensure that abrasion and mechanical shock are minimized.

