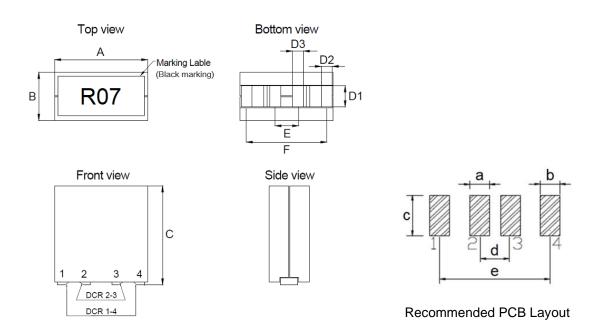
1. Part No. Expression

<u>SMF090610R07LZF</u>

- (a)
- (b)
- (c) (d) (e) (f)
- Series Code (a)

Tolerance Code (d)

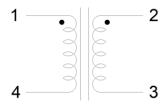

Dimension Code (b)

Special Code (e)

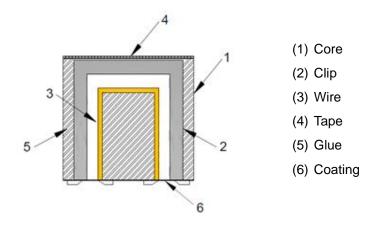
Inductance Code (c)

(f) **Packaging Code**

2. Configuration & Dimensions (Unit: mm)



- Note: 1. The above PCB layout reference only.
 - 2. Marking: Inductance Code (Please refer to Electrical Characteristics table)
 - 3. PAD surface flatness 0.1 mm max.
 - 4. Recommended: modules should be surface- mounted on the second time (last time) of customer's double-sided PCB to prevent shift of parts.
 - 5. Before soldering, be sure to preheat components. The recommended preheating condition is 150°C for 3 minutes.


А	В	С	D1	D2	D3	E
9.30±0.30	6.10±0.30	10.20±0.3	3.20±0.30	1.15±0.30	0.60±0.30	2.20±0.30
F	а	b	С	d	е	-
7.85±0.30	1.40 Ref	1.65 Ref	3.70 Ref	1.90 Ref	7.85 Ref	-

3. Schematic

4. Material List

5. General Specifications

- (a) Operating Temp.: -40°C to +125°C (including self-temperature rise)
- (b) Storage Temp.: -40°C to +125°C (on board)
- (c) All test data referenced to 25°C ambient.
- (d) Heat Rated Current (Irms) will cause the coil temperature rise approximately ΔT of 40°C.
- (e) Saturation Current (Isat1) will cause inductance L0 to drop approximately 20% at +25°C. Saturation Current (Isat2) will cause inductance L0 to drop approximately 20% at +100°C. Saturation Current (Isat3) will cause inductance L0 to drop approximately 20% at +125°C.
- (f) Rated DC Current: The lower value of Irms and Isat.
- (g) Maximum Operating Voltage: 80V
- (h) Storage Condition (Component in its packaging)
 - i) Temperature: Less than 40°C
 - ii) Humidity: Less than 60% RH

6. Electrical Characteristics

Part Number	L(nH) Part Number 1-4/2-3 ±15%	Li (nH) Min	(m	CR Ω) 0%	Irr (<i>F</i>	ns A)	Isat 1 (A)	Isat 2 Isat 3 (A)	Kps Lk Typ (nH)	Marking		
	±1370	IVIIII	1-4	2-3	1-4	2-3	@25°C	@100°C	@125°C		Тур	
SMF090610R07LZF	70	47.6	0.125	0.330	75	40	140	116	109	0.92	8	70N
SMF090610R10LZF	100	64	0.125	0.330	75	40	112	83	78	0.94	8	R10
SMF090610R12LZF	120	77	0.125	0.330	75	40	93	67	63	0.95	8	R12
SMF090610R15LZF	150	96	0.125	0.330	75	40	67	53	49	0.94	8	R15
SMF090610R17LZF	170	107	0.125	0.330	75	40	56	48	45	0.96	8	R17
SMF090610R18LZF	180	115	0.125	0.330	75	40	54	46	43	0.97	8	R18
SMF090610R20LZF	200	128	0.125	0.330	75	40	52	42	39	0.97	8	R20
SMF090610R22LZF	220	140	0.125	0.330	75	40	50	38	35	0.97	8	R22

Notes:

1. L1@ 1.0V/100KHz, 0A, 25°C

2. Li @ 1.0V/100KHz, I_{SAT}

3. Kps: Coupling Coefficient

4. Lk: Leakage inductance

7. Soldering Specification

Mildly activated rosin fluxes are preferred. Our terminations are suitable for re-flow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

7-1. IR Soldering Reflow

Recommended temperature profiles for lead free re-flow soldering in Figure 1, Table 1.1 & 1.2 (J-STD-020E).

7-2. Iron Reflow

Products attachment with a soldering iron is discouraged due to the inherent process control limitations. In the event that a soldering iron must be employed the following precautions are recommended (Figure 2).

ତ

TEM PERATURE(

Note:

- (a) Preheat circuit and products to 150°C.
- (b) 355°C tip temperature (Max.)
- (c) Never contact the ceramic with the iron tip
- (d) 1.0mm tip diameter (Max.)
- (e) Use a 20 watt soldering iron with tip diameter of 1.0mm
- (f) Limit soldering time to 4~5 sec.

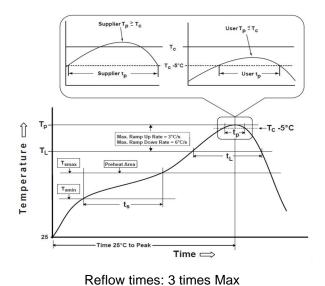
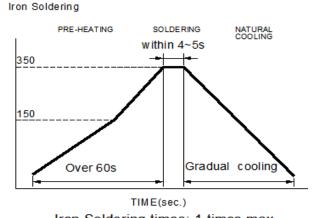



Figure 1: IR Soldering Reflow

Iron Soldering times: 1 times max.

Soldering iron method: 350±5°C Max Figure 2: Iron soldering temperature profiles

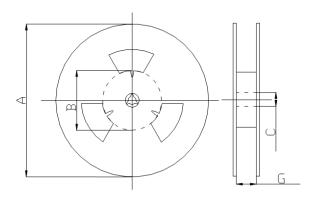
Table (1.1) Reflow Profiles

Profile Type:	Pb-Free Assembly
Preheat	
-Temperature Min (T _{smin})	150°C
-Temperature Max (T _{smax})	200°C
-Time (t_s) from $(T_{smin} \text{ to } T_{smax})$	60-120seconds
Ramp-up rate (T _L to T _p)	3°C /second max.
Liquids temperature (T _L)	217°C
Time (t _L) maintained above T _L	60-150 seconds
Classification temperature (Tc)	See Table (1.2)
Time (t _p) at Tc- 5°C (Tp should be equal to or less than Tc.)	*< 30 seconds
Ramp-down rate (T _p to T _L)	6°C /second max.
Time 25°C to peak temperature	8 minutes max.

Tp: maximum peak package body temperature, **Tc**: the classification temperature.

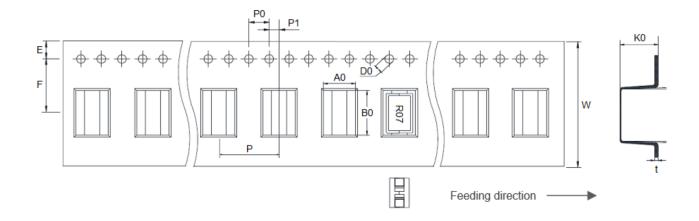
For user (customer) **Tp** should be equal to or less than **Tc**.

Table (1.2) Package Thickness/Volume and Classification Temperature (T_c)


	Package	Volume mm ³	Volume mm ³	Volume
	Thickness	<350	350-2000	mm³ >2000
PB-Free	<1.6mm	260°C	260°C	260°C
	1.6-2.5mm	260°C	250°C	245°C
Assembly	≥2.5mm	250°C	245°C	245°C

Reflow is referred to standard IPC/JEDEC J-STD-020E.

^{*}Tolerance for peak profile temperature (Tp) is defined as a supplier minimum and a user maximum.

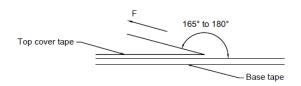

8. Packaging Information

8-1. Reel Dimension (Unit: mm)

Туре	А	В	С	G
13"x24mm	330.0	100.0	13.5	24.5

8-2. Tape Dimension (Unit: mm)

В0	A0	K0	Р	P0	P1
9.80±0.30	6.60±0.30	10.70±0.30	12.00±0.10	4.00±0.10	2.00±0.10
W	F	E	D0	t	-
24.00±0.30	11.50±0.10	1.75±0.10	1.50±0.10	0.50±0.05	-



8-3. Packaging Quantity (Unit: Pcs)

Chip/ Reel	500	
Carton	4,000	

Carton size: 352*352*358mm

8-4. Tearing Off Force

The force for tearing off cover tape is according to the follow table, in the arrow direction under the following conditions.

(Referenced ANSI/EIA-481-D-2008 of 4.11 standard)

Room Temp. (°C)	Room Humidity (%)	Room atm (hPa)	Tearing Speed (mm/min)
5~35	45~85	860~1060	300±10

Tape Size	8 mm	12 to 56 mm	72 mm or Wider
Tearing Off Force (grams)	10~100	10~130	10~150

Application Notice

1. Storage Conditions

To maintain the solderability of terminal electrodes:

- (a) Recommended products should be used within 12 months from the time of delivery.
- (b) The packaging material should be kept where no chlorine or sulfur exists in the air.

2. Transportation

- (a) Products should be handled with care to avoid damage or contamination from perspiration and skin oils.
- (b) Vacuum pick up is strongly recommended for individual components.
- (c) Bulk handling should ensure that abrasion and mechanical shock are minimized.

