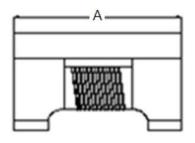
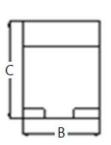
1. Part No. Expression

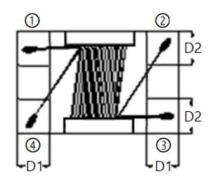
WAQ 5 FD110 - R C - 10

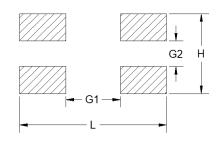
- (a)
- (b) (c)
- (d)
- (e) (f) (g)
- (a) Series Code

(e) Packaging Code

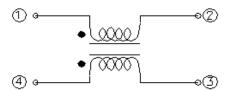

(b) Dimension Code


(f) Current Code

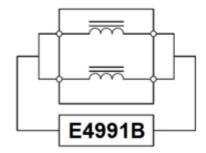

(c) Material Code

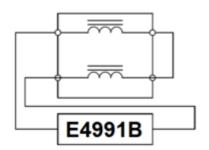

- (g) Internal Code
- (d) Inductance Code

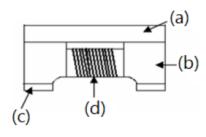
2. Configuration & Dimensions (Unit: mm)


Recommended PCB Layout

Note: 1. The above PCB layout reference only.


А	В	С	D1	D2
3.30±0.20	2.50±0.20	2.50 Max	0.55±0.15	0.75±0.20
L	Н	G1	G2	-
3.70 Ref	2.80 Ref	2.40 Ref	0.60 Ref	-


3. Schematic

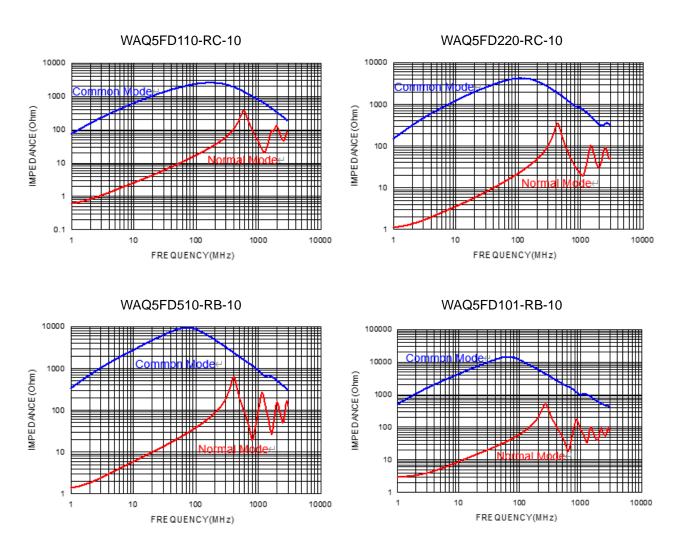

Common mode

Differential mode

4. Material List

- (a) Upper Plate
- (b) Core
- (c) Termination
- (d) Wire

5. General Specifications


- (a) Reliability test for this part meets AEC-Q200 standard.
- (b) Operating Temp.: -55°C to +150°C (including self-temperature rise)
- (c) Storage Temp.: -55°C to +150°C (on board)
- (d) All test data referenced to 25°C ambient.
- (e) Heat Rated Current (Irms) will cause the coil temperature rise ΔT of 40°C Max.
- (f) Storage Condition (Component in its packaging)
 - i) Temperature: Less than 40°C
 - ii) Humidity: Less than 60% RH

6. Electrical Characteristics

Part Number		ince(Ω) MHz	Inductance(µH) +50%/-30%	DCR (Ω)	Rated Current (mA)	Rated Voltage (V _{DC})	IR (MΩ)
	Min	Тур	@0.1V/100KHz	Max	Max	Max	Min
WAQ5FD110-RC-10	300	550	11	0.4	300	80	10
WAQ5FD220-RC-10	500	1100	22	0.5	250	80	10
WAQ5FD510-RB-10	1000	2600	51	0.7	200	80	10
WAQ5FD101-RB-10	2200	5100	100	1.5	150	80	10

7. Characteristics Curve

8. Soldering Specification

Mildly activated rosin fluxes are preferred. Our terminations are suitable for re-flow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

8-1. IR Soldering Reflow

Recommended temperature profiles for lead free re-flow soldering in Figure 1, Table 1.1 & 1.2 (J-STD-020E).

8-2. Iron Reflow

Products attachment with a soldering iron is discouraged due to the inherent process control limitations. In the event that a soldering iron must be employed the following precautions are recommended (Figure 2).

Note:

- (a) Preheat circuit and products to 150°C.
- (b) 355°C tip temperature (Max.)
- (c) Never contact the ceramic with the iron tip
- (d) 1.0mm tip diameter (Max.)
- (e) Use a 20 watt soldering iron with tip diameter of 1.0mm
- (f) Limit soldering time to 4~5 sec.

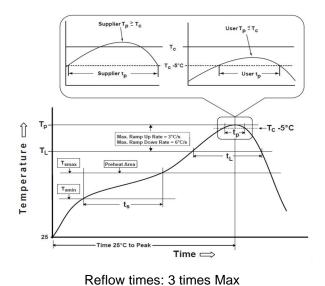
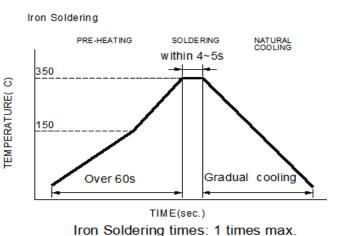



Figure 1: IR Soldering Reflow

Soldering iron method: 350±5°C Max Figure 2: Iron soldering temperature profiles

Table (1.1) Reflow Profiles

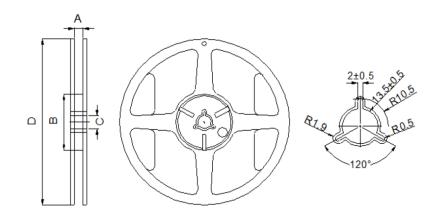
Profile Type:	Pb-Free Assembly	
Preheat		
-Temperature Min (T _{smin})	150°C	
-Temperature Max (T _{smax})	200°C	
-Time (t_s) from $(T_{smin} \text{ to } T_{smax})$	60-120seconds	
Ramp-up rate (T _L to T _p)	3°C /second max.	
Liquids temperature (T _L)	217°C	
Time (t _L) maintained above T _L	60-150 seconds	
Classification temperature (Tc)	See Table (1.2)	
Time (t _p) at Tc- 5°C (Tp should be equal to or less than Tc.)	*< 30 seconds	
Ramp-down rate (T _p to T _L)	6°C /second max.	
Time 25°C to peak temperature	8 minutes max.	

Tp: maximum peak package body temperature, **Tc**: the classification temperature.

For user (customer) **Tp** should be equal to or less than **Tc**.

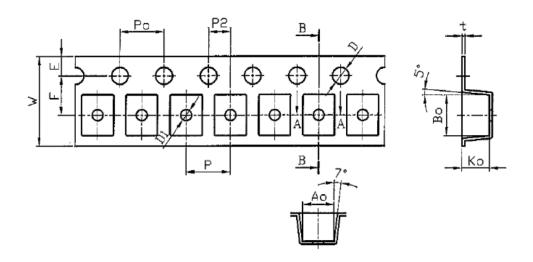
Table (1.2) Package Thickness/Volume and Classification Temperature (T_c)

	Package	Volume mm ³	Volume mm ³	Volume
	Thickness	<350	350-2000	mm³ >2000
PB-Free	<1.6mm	260°C	260°C	260°C
	1.6-2.5mm	260°C	250°C	245°C
Assembly	≥2.5mm	250°C	245°C	245°C


Reflow is referred to standard IPC/JEDEC J-STD-020E.

Superworld Electronics

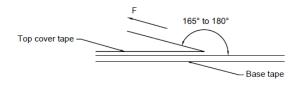
^{*}Tolerance for peak profile temperature (Tp) is defined as a supplier minimum and a user maximum.


9. Packaging Information

9-1. Reel Dimension (Unit: mm)

Туре	А	В	С	D
7"x8mm	9.0±0.5	60.0±2.0	13.5±0.5	178.0±2.0

9-2. Tape Dimension (Unit: mm)


W	Р	E	F	P2	D
8.00±0.10	4.00±0.10	1.75±0.10	3.50±0.05	2.00±0.05	1.50+0.10/-0.00
D1	Ро	Ao	Во	Ko	t
1.00±0.10	4.00±0.10	2.88±0.10	3.65±0.10	2.50±0.10	0.26±0.05

9-3. Packaging Quantity (Unit: Pcs)

Chip/ Reel	2,000
Inner Box	10,000
Middle Box	50,000
Carton	100,000

9-4. Tearing Off Force

The force for tearing off cover tape is according to the follow table, in the arrow direction under the following conditions.

(Referenced ANSI/EIA-481-D-2008 of 4.11 standard)

Room Temp. (°C)	Room Humidity (%)	Room atm (hPa)	Tearing Speed (mm/min)
5~35	45~85	860~1060	300±10

Tape Size	8 mm	12 to 56 mm	72 mm or Wider
Tearing Off Force (grams)	10~100	10~130	10~150

Application Notice

1. Storage Conditions

To maintain the solderability of terminal electrodes:

- (a) Recommended products should be used within 12 months from the time of delivery.
- (b) The packaging material should be kept where no chlorine or sulfur exists in the air.

2. Transportation

- (a) Products should be handled with care to avoid damage or contamination from perspiration and skin oils.
- (b) Vacuum pick up is strongly recommended for individual components.
- (c) Bulk handling should ensure that abrasion and mechanical shock are minimized.

