1. Part No. Expression

PDC 05041R0 M Z F

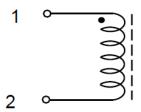

- (a)
- (b)
- (c) (d) (e) (f)
- (a) Series Code

- (d) Tolerance Code
- **Dimension Code**

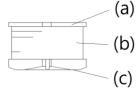
Special Code

- (c) Inductance Code
- **Packaging Code**

2. Configuration & Dimensions (Unit: mm)



1. The above PCB layout reference only.


2. Marking: Inductance Code

А	В	С	G	Н	I
5.20±0.30	5.80±0.30	4.50±0.35	1.70 Ref	5.50 Ref	2.15 Ref

3. Schematic

4. Material List

- (a) Core
- (b) Wire
- (c) Electrode

5. General Specifications

- (a) Operating Temp.: -40°C to +125°C (including self-temperature rise)
- (b) Storage Temp.: -40°C to +125°C (on board)
- (c) All test data referenced to 25°C ambient.
- (d) IDC will cause the coil temperature rise approximately ΔT of 40°C Max, and inductance L0 to drop approximately 10%.
- (e) Rated Current: The lower value of Isat and Irms.
- (f) Storage Condition (Component in its packaging)
 - i) Temperature: 25°C±5°C
 - ii) Humidity: 35~70% RH

6. Electrical Characteristics

Part Number	Inductance Test (µH) @0A Frequency		DCR (Ω)	IDC (A)	
	(pr.) 0071		Max	Тур	Max
PDC05041R0MZF	1.0±20%	1V/7.96MHz	0.015	5.90	4.75
PDC05041R2MZF	1.2±20%	1V/7.96MHz	0.020	5.20	4.20
PDC05041R5MZF	1.5±20%	1V/7.96MHz	0.025	4.70	3.80
PDC05041R8MZF	1.8±20%	1V/7.96MHz	0.030	4.00	3.20
PDC05042R2MZF	2.2±20%	1V/7.96MHz	0.035	3.80	3.10
PDC05042R7MZF	2.7±20%	1V/7.96MHz	0.040	3.40	2.75
PDC05043R3MZF	3.3±20%	1V/7.96MHz	0.045	3.30	2.65
PDC05043R9MZF	3.9±20%	1V/7.96MHz	0.050	2.90	2.35
PDC05044R7MZF	4.7±20%	1V/7.96MHz	0.060	2.80	2.50
PDC05045R6MZF	5.6±20%	1V/7.96MHz	0.070	2.40	1.95
PDC05046R8MZF	6.8±20%	1V/7.96MHz	0.080	2.10	1.70
PDC05048R2MZF	8.2±20%	1V/7.96MHz	0.090	2.00	1.60
PDC0504100MZF	10.0±20%	1V/2.52MHz	0.100	1.44	1.15
PDC0504120MZF	12.0±20%	1V/2.52MHz	0.120	1.40	1.12
PDC0504150MZF	15.0±20%	1V/2.52MHz	0.140	1.30	1.05
PDC0504180MZF	18.0±20%	1V/2.52MHz	0.150	1.23	1.00
PDC0504220MZF	22.0±20%	1V/2.52MHz	0.180	1.11	0.90
PDC0504270MZF	27.0±20%	1V/2.52MHz	0.200	0.97	0.78
PDC0504330KZF	33.0±10%	1V/2.52MHz	0.230	0.88	0.70
PDC0504390KZF	39.0±10%	1V/2.52MHz	0.320	0.80	0.65
PDC0504470KZF	47.0±10%	1V/2.52MHz	0.370	0.72	0.60
PDC0504560KZF	56.0±10%	1V/2.52MHz	0.420	0.68	0.55
PDC0504680KZF	68.0±10%	1V/2.52MHz	0.460	0.61	0.50
PDC0504820KZF	82.0±10%	1V/2.52MHz	0.600	0.58	0.47
PDC0504101KZF	100.0±10%	1V/1kHz	0.700	0.52	0.42
PDC0504121KZF	120.0±10%	1V/1kHz	0.930	0.48	0.40
PDC0504151KZF	150.0±10%	1V/1kHz	1.100	0.40	0.32
PDC0504181KZF	180.0±10%	1V/1kHz	1.380	0.38	0.30
PDC0504221KZF	220.0±10%	1V/1kHz	1.570	0.35	0.28
PDC0504102KZF	1000.0±10%	1V/1kHz	6.000	0.15	0.12

7. Soldering Specification

Mildly activated rosin fluxes are preferred. Our terminations are suitable for re-flow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

7-1. IR Soldering Reflow

Recommended temperature profiles for lead free re-flow soldering in Figure 1, Table 1.1 & 1.2 (J-STD-020E).

7-2. Iron Reflow

Products attachment with a soldering iron is discouraged due to the inherent process control limitations. In the event that a soldering iron must be employed the following precautions are recommended (Figure 2).

Note:

- (a) Preheat circuit and products to 150°C.
- (b) 355°C tip temperature (Max.)
- (c) Never contact the ceramic with the iron tip
- (d) 1.0mm tip diameter (Max.)
- (e) Use a 20 watt soldering iron with tip diameter of 1.0mm
- (f) Limit soldering time to 4~5 sec.

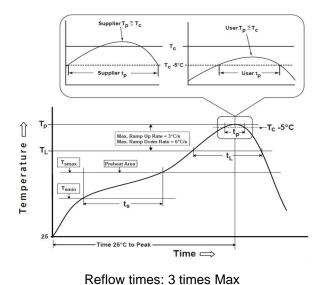
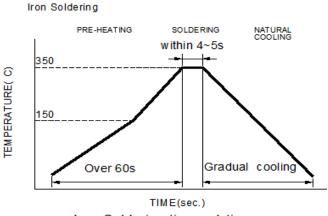



Figure 1: IR Soldering Reflow

Iron Soldering times: 1 times max.

Soldering iron method: 350±5°C Max

Figure 2: Iron soldering temperature profiles

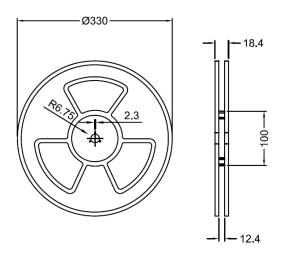
Table (1.1) Reflow Profiles

Profile Type:	Pb-Free Assembly
Preheat	
-Temperature Min (T _{smin})	150°C
-Temperature Max (T _{smax})	200°C
-Time (t _s) from (T _{smin} to T _{smax})	60-120seconds
Ramp-up rate (T _L to T _p)	3°C /second max.
Liquids temperature (T _L)	217°C
Time (t _L) maintained above T _L	60-150 seconds
Classification temperature (Tc)	See Table (1.2)
Time (t _p) at Tc- 5°C (Tp should be equal to or less than Tc.)	*< 30 seconds
Ramp-down rate (Tp to TL)	6°C /second max.
Time 25°C to peak temperature	8 minutes max.

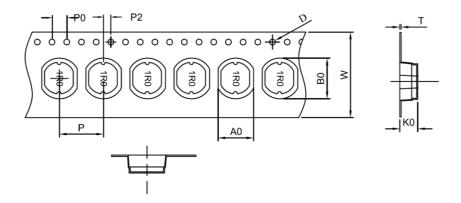
Tp: maximum peak package body temperature, **Tc**: the classification temperature.

For user (customer) **Tp** should be equal to or less than **Tc**.

Table (1.2) Package Thickness/Volume and Classification Temperature (Tc)


	Package	Volume mm ³	Volume mm ³	Volume
	Thickness	<350	350-2000	mm³ >2000
PB-Free	<1.6mm	260°C	260°C	260°C
	1.6-2.5mm	260°C	250°C	245°C
Assembly	≥2.5mm	250°C	245°C	245°C

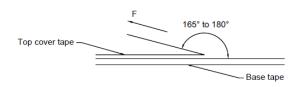
Reflow is referred to standard IPC/JEDEC J-STD-020E.


^{*}Tolerance for peak profile temperature (Tp) is defined as a supplier minimum and a user maximum.

8. Packaging Information

8-1. Reel Dimension (Unit: mm)

8-2. Tape Dimension (Unit: mm)



W	A0	В0	K0	Р
12.0+0.3/-0.1	5.5±0.1	6.0±0.1	4.7±0.1	8.0±0.1
D	P0	P2	Т	-
1.5+0.1/-0.0	4.0±0.1	2.0±0.1	0.4 Ref	-

8-3. Packaging Quantity (Unit: Pcs)

Chip/ Reel	1,500	
Inner Box	3,000	
Outer Box	15,000	

8-4. Tearing Off Force

The force for tearing off cover tape is according to the follow table, in the arrow direction under the following conditions.

(Referenced ANSI/EIA-481-D-2008 of 4.11 standard)

Room Temp. (°C)	Room Humidity (%)	Room atm (hPa)	Tearing Speed (mm/min)
5~35	45~85	860~1060	300±10

Tape Size	8 mm	12 to 56 mm	72 mm or Wider
Tearing Off Force (grams)	10~100	10~130	10~150

Application Notice

1. Storage Conditions

To maintain the solderability of terminal electrodes:

- (a) Recommended products should be used within 6 months from the time of delivery.
- (b) The packaging material should be kept where no chlorine or sulfur exists in the air.

2. Transportation

- (a) Products should be handled with care to avoid damage or contamination from perspiration and skin oils.
- (b) Vacuum pick up is strongly recommended for individual components.
- (c) Bulk handling should ensure that abrasion and mechanical shock are minimized.

